首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preceding studies of amino acid substitutions in the lac repressor of Escherichia coli resulting from missense mutations and suppressed nonsense mutations in the lacI gene are combined and critically evaluated with regard to the advantages, limitations and future applications of similar methods in the study of protein structure and function. These analyses reveal regions of the protein involved in different repressor functions. The pattern of mutational sites in the lacI gene leading to loss of inducer binding of the repressor is striking, for in the carboxyl half of the protein the affected residues cluster in nearly equally spaced regions. Possible similarities between the inducer binding site of repressor and the antigen binding site of immunoglobulin are discussed.  相似文献   

2.
Representative members of the six classes of operator constitutive (Oc) point mutations, which have been mapped and well characterized in vivo, were crossed into λφ80 lac phages. The phage DNAs containing the Oc mutations were used to measure the affinity of the lac repressor (R) for each Oc operator by determining the half-lives of the different ROc complexes in vitro. The results provide evidence that: (a) the higher the constitutive level of β-galactosidase in vivo, as the result of an Oc mutation, the lower the affinity of the lac repressor for that Oc operator, with a maximum difference of two orders of magnitude in affinity of the repressor for the highest Oc tested as compared to the wild type O+ operator; (b) the six classes of Oc operators appear to be twofold degenerate, in that two members of each class, which were previously distinguished by mapping, have the same affinity for the lac repressor; (c) an inducer and an anti-inducer have the same effect on the ROc complexes as on the RO+ complexes; (d) the relationship between induction ratios in vivo and the binding constant of the repressor for each Oc mutation in vitro does not follow the mass action equation but rather a more complex dependency, which is discussed.These results suggest a functional symmetry in the lac operator.  相似文献   

3.
The rotational mobility of lac repressor from Escherichia coli was investigated by nanosecond fluorescence depolarization spectroscopy. A single rotational correlation time (φ) of the repressor was observed by monitoring the emission anisotropic decay of the intrinsic tryptophan fluorescence. The small value of φ (9·5 ns) suggests that one or both of the two tryptophan residues in the repressor are located in a flexible segment of the protein molecule. This segmental flexibility is enhanced by binding of inducer (isopropyl-β-d-thiogalactoside) to the repressor while it is restrained by binding of anti-inducer (glucose) or small DNA fragments, as indicated by the changes in φ. Further time-dependent emission anisotropy studies with an extrinsic fluorescent probe, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate, covalently attached to the repressor yielded two rotational correlation times. The shorter φS (6·7 ns) also corresponds to a segmental flexibility whereas the longer φL (118 ns) represents the rotational motion of the entire repressor molecule. Both the values of φS and φL vary by addition of inducer or anti-inducer in a manner similar to that observed for the intrinsic tryptophan fluorescence but they are insensitive to addition of DNA fragments. The changes in local mobility of the lac repressor molecule observed in these studies may provide some insight into how inducer (or anti-inducer) destabilizes (or stabilizes) the repressor-operator complex.  相似文献   

4.
Hypoxanthine was substituted for guanine at specific sites in the lac operator DNA by a combination of chemical and enzymatic procedures. The stability of these modified lac operators with wild-type (SQ) and tight binding (QX86) lac repressors was measured. Effects were variable. At some sites insertion of hypoxanthine significantly reduced the stability of the complex whereas at other sites substitution with hypoxanthine did not alter the repressor—operator interaction. In addition, insertion of this analog at two sites increased the stability of the complexes. These changes were used to partially map regions of the lac operator that are in contact with lac represser. The results suggest that lac repressor recognizes the guanine 2-amino group at specific sites in the minor groove of lac operator.  相似文献   

5.
In vitro measurements show that the X86 repressor, which has an increased affinity for the lac operator as compared to wild-type repressor, also has an increased affinity for non-operator sites on Escherichia coli DNA. The rate constant of association of repressor and operator is decreased by E. coli DNA fivefold more for X86 repressor than for wild-type repressor. Low inducer concentrations increase the rate of association of X86 repressor and operator in the presence of E. coli DNA. In a partial equilibrium situation where part of the X86 repressor is bound to the operator, and part to either non-operator sites on E. coli DNA or to an Oc operator, the formation of complexes between X86 repressor and wild-type operator is favored by low inducer concentrations. Repression of the lac enzymes increases drastically in the X86 mutant in the absence of DNA synthesis in vivo. A new explanation for the in vivo characteristics of the X86 mutant is suggested.  相似文献   

6.
In order to compare the structures of the DNA-binding sites on variants of the lac repressor, we have studied the influence of these variants on the dimethylsulfate methylation of the lac operator. Since a bound protein changes the availability of specific purines in the operator to this chemical attack, comparisons of the methylation patterns will show similarities or differences in the protein DNA contacts. We compared lac repressor, induced lac repressor (repressor bound to the gratuitous inducer isopropyl-β-d-thiogalactoside), mutant repressors having increased operator affinities (X86, I12 and the X86-I12 double mutant) and repressor peptides (long headpiece, residues 1 to 59 and short headpiece. residues 1 to 51). All of these repressors and repressor peptides exhibit the same general pattern of protection and enhancement in the operator; however, the short headpiece pattern differs most from that of the repressor while the induced repressor and the long headpiece show intermediate patterns that are strikingly similar to each other. The mutant repressors do not show an isopropyl-β-d-thiogalactoside effect but otherwise are almost indistinguishable from wild-type repressor. These results demonstrate that all molecules bind to the operator using basically the same protein-DNA contacts; they imply that (1) most and possibly all repressor contacts to operator lie within amino acids 1 to 51, (2) inducer weakens many contacts rather than totally disrupting one or even a few and (3) the tight-binding mutants do not make additional contacts to the DNA.These results are consistent with a model in which the amino-terminal portions of two repressor monomers make the DNA contacts. We show that one can understand the affinity of binding as related to the accuracy of the register of the two amino-terminal portions along the DNA. Furthermore, the action of inducer and the behaviour of the tight binding mutants can be accomodated within a two-state model in which the strongly or weakly binding states correspond to structures in which the amino-terminal regions are rigidly or loosely held with respect to each other.  相似文献   

7.
Few proteins have had such a strong impact on a field as the lac repressor has had in Molecular Biology. Over 40 years ago, Jacob and Monod [Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3 (1961) 318] proposed a model for gene regulation, which survives essentially unchanged in contemporary textbooks. It is a cogent depiction of how a set of 'structural' genes may be coordinately transcribed in response to environmental conditions and regulates metabolic events in the cell. In bacteria, the genes required for lactose utilization are negatively regulated when a repressor molecule binds to an upstream cis activated operator. The repressor and its operator together form a genetic switch, the lac operon. The switch functions when inducer molecules alter the conformation of the repressor in a specific manner. In the presence of a particular metabolite, the repressor undergoes a conformational change that reduces its affinity for the operator. The structures of the lac repressor and its complexes with operator DNA and effector molecules have provided a physical platform for visualizing at the molecular level the different conformations the repressor and the molecular basis for the switch. The structures of lac repressor, bound to its operator and inducer, have also been invaluable for interpreting a plethora of biochemical and genetic data.  相似文献   

8.
The wild-type lac repressor of Escherichia coli is a tetrameric protein which contains two tryptophanyl residues per subunit at positions 190 and 209. Solute perturbation studies of the tryptophan fluorescence of the repressor were performed using a polar but uncharged quencher, acrylamide, to prevent possible bias caused by ionic quenchers. The results indicate that the two tryptophan residues have different accessibilities to the quencher. In addition, contrary to a previous report, the accessibility of these tryptophan residues is not altered by isopropyl-β-d-thiogalactoside (IPTG) binding to the repressor. Similar studies with mutant lac repressor containing only a single tryptophan either at positions 190 or 209 suggest that tryptophan 209 is located in a region which is perturbed by inducer binding. That the two tryptophanyl residues have heterogeneous environments was further confirmed by nanosecond fluorescence spectroscopy which showed the wild-type lac repressor exhibiting two excited-state lifetimes, τ1 = 5.3 ns and τ2 = 10 ns. In the presence of 10?3m IPTG, only a single lifetime of 6 ns was observed for the wild-type repressor suggesting that the inducer perturbs the tryptophan residue with the longer lifetime but not the one with the shorter lifetime. This is in accord with the observation that the mutant repressor containing only tryptophan 190 (the Tyr-209 repressor) has a single lifetime of 4.5 ns which is not altered by IPTG binding. The surprising finding that the mutant repressor which contains only tryptophan 209 (the Tyr-190 repressor) shows two excited-state lifetimes has been interpreted to indicate that the repressor either does not exhibit fourfold symmetry in its subunit arrangement or is present in two different conformational states.  相似文献   

9.
Using the protein predictive model of Chou & Fasman (1974b), the secondary structure of the lac repressor has been elucidated from its amino acid sequence of 347 residues. The conformation is predicted to contain 37% α-helix and 35% β-sheet for the repressor, and 29% helix and 41% β-sheet for the trypsin-resistant core (residues 60 to 327). Circular dichroism studies indicate that native lac repressor contains 40% helix and 42% β-sheet, while the core has 16% helix and 54% β-sheet, in general agreement with the predicted conformation. The sharp reduction in helicity for the trypsinized lac repressor could be due to the loss of two long helical regions, 26–45 and 328–344, predicted at both terminals. There are extensive β-sheets predicted in the 215–324 region, which may be responsible for tetrameric stabilization found in both the lac repressor and the core. Residues 17 to 33 were previously predicted by Adler et al. (1972) to be helical and were proposed to bind in the major groove of DNA. However, the present analysis shows that there are two anti-parallel β-sheet regions: 4–7 and 17–24 at the N-terminal as well as 315–318 and 321–324 at the C-terminal of the lac repressor. These β-sheet pairs may assume the twisted “polypeptide double helix” conformation (Carter & Kraut, 1974) and bind to complementary regions in the major groove of DNA. The OH groups of Tyr at the N-terminal and those of Thr and Ser side chains, in both β-sheets at the N and C-terminal ends, could form hydrogen bonds to specific sites on the lac operator. There are 23 reverse β-turns predicted that may control the tertiary folding of the lac repressor, which is essential for operator binding. The behavior of several lac repressor mutants can be satisfactorily explained in terms of polar to non-polar group replacements as well as conformational changes in light of the present predicted model.  相似文献   

10.
An extensive set of amber and ochre sites in the lacI gene has been characterized with respect to the base change required to generate the nonsense codon (Miller et al., 1977; Coulondre &; Miller, 1977). These mutations have been used to analyze the forward mutational spectrum of a series of mutagens in Escherichia coli. The sites induced by N′-methyl-N′-nitro-N-nitrosoguanidine, ethyl methanesulfonate, 4-nitroquinoline-1-oxide, and ultraviolet light, were examined, as well as those which arose spontaneously. Sites induced by the G · C → A · T transition were compared with those generated by 2-aminopurine mutagenesis. All together, more than 4000 independent occurrences of amber and ochre mutations were tabulated in order to define the respective mutagenic specificities. With the exception of the A · T → G · C change, all base substitutions lead to the generation of nonsense codons from wild-type. The A · T → G · C transition was monitored in a reversion system, in which the ochre to amber conversion (UAA → UAG) was scored, as well as the UAA → CAA reversion.Both NG3 and EMS were found to be highly specific for the G · C → A · T transition, less than 1% transversions appearing in either case. At between 1% and 5% the level of the G · C → A · T change, NG can stimulate the A · T → G · C transition. EMS stimulates the A · T → G · C transition at a significantly lower rate. NQO is also highly specific for G · C base-pairs, but approximately 10% of the changes found at these sites are transversions. Mutations found spontaneously or after irradiation with ultraviolet light showed none of the specificities found for EMS, NG or NQO. All transversions were detected in both cases. Moreover, a significant number of tandem double base changes were found to be induced by u.v. irradiation. Some of these have been verified directly by protein sequencing. The frequencies of occurrence of amber and ochre mutations arising from the G · C → A · T transition have been compared for different mutagens, revealing several striking hotspots. The implications of these findings with respect to the mechanism of mutagenesis and the application of different mutagens are discussed.  相似文献   

11.
Extensively purified lac repressor from Escherichia coli was observed under an electron microscope after negative staining with sodium phosphotungstate. It is shown that a negatively stained repressor molecule has at least an axis of 2-fold rotational symmetry and an inter-subunit space (hole or cleft) filled with the stain, in which double helical DNA may fit in a native state of the repressor.  相似文献   

12.
A low-resolution model for the lac repressor is proposed from small-angle neutron studies on the native protein as well as on its isolated tryptic core and the 51 amino acids N-terminal peptide (headpiece). The implications for the interaction with the lac operator DNA are discussed.  相似文献   

13.
Approximately 2000 non-suppressible mutations in the lacI gene of Escherichia coli have been extensively analyzed. The majority consists of missense mutations resulting in amino acid substitutions in the lac repressor. We characterized each mutation with respect to the resulting altered phenotype, and also mapped them against a large set of deletions. The correlation of the genetic and physical map reported previously has been used to localize the part of the protein affected by each mutation with a high degree of precision (within several amino acids). In particular, we examined the distribution of mutational sites along the gene leading to the i?, is, ir and its phenotypes. Certain regions of the protein, such as the amino-terminal end, are very sensitive to amino acid exchanges with regard to the i? phenotype, whereas other regions are relatively insensitive to substitutions. Of particular interest is the C-terminal half of the gene-protein map, where many Is, and Its mutational sites cluster in very small regions separated by distinct and nearly regularly spaced intervals. The possible significance of these results with respect to repressor structure and function, and to protein structure in general, is discussed. In the following paper we consider the results reported here together with the data from suppressed nonsense mutations, which are described in the preceding paper.  相似文献   

14.
Targeting the Escherichia coli lac repressor to the mammalian cell nucleus   总被引:2,自引:0,他引:2  
M C Hu  N Davidson 《Gene》1991,99(2):141-150
We have previously shown that about 90% of total Escherichia coli lac repressor synthesized in mammalian cells is located in the cytoplasm [Hu and Davidson, Cell 48 (1987) 555-566]. To target a functional lac repressor to the nucleus, we mutated 10 nucleotides at the 3' end of the coding sequence, thus adding the nuclear localization signal of the simian virus 40 large-T antigen to the C terminus of the repressor. The mutant lacI gene and the wild-type (wt) gene, both in standard animal cell expression vectors, driven by the promoter of the Rous sarcoma virus long terminal repeat, were stably transfected into three rodent cell lines. In confirmation of our previous results, only about 10% of the wt repressor, but all of the mutant protein, was localized in the nucleus. DNase I footprint analyses showed that the mutant repressor retained the same operator DNA-binding specificity as wt repressor. Furthermore, both repressor-operator complexes could be dissociated by addition of isopropyl-beta-D-thiogalactopyranoside in vitro. However, the ratio of number of repressor molecules per nucleus that, by in vitro assay, could bind to the operator sequence to the number of monomer repressor polypeptides per nucleus, as determined by Western blotting, was about 1:4 for the wt repressor and about 1:30 for the mutant repressor. This suggests that: (a) the mutant repressor assembles into tetramers inefficiently; and/or (b) it has reduced binding affinity to the operator sequence; and/or (c) it has higher binding affinity to nonspecific DNA.  相似文献   

15.
16.
Site-specific DNA-affinity chromatography of the lac repressor.   总被引:4,自引:1,他引:3       下载免费PDF全文
To test the feasibility of site-specific DNA-affinity chromatography, E. coli lac repressor was bound to an operator-containing DNA column, and in parallel to a non-operator DNA column. Salt gradient elution shows: 1) elution from non-operator DNA was near 250mM KCl or NaCl; interpretation of this result suggests the usefulness of the procedure for studying salt-dependence of DNA-protein affinities; 2) elution from operator-containing DNA was delayed (average elution = 1000mM salt), demonstrating a feasibility of site-specific DNA-affinity chromatography, if one provides a sufficiently favorable ratio of specific to non-specific DNA binding sites; 3) repressor eluted from operator-containing DNA over a very broad salt range, which may represent chromatography-generated repressor heterogeneity.  相似文献   

17.
The trypsin-resistant core protein of the lac repressor was utilized in protecting operator DNA from two types of enzymatic digestion. Core repressor protects and enhances operator DNA digestion by DNase I in the same fashion as intact repressor, though to a lesser degree on the lower strand. DNase I patterns found for the ternary complexes (protein-sugar-operator) were consistent with the expected affinity alterations of the protein species in response to binding these ligands. The 3′ boundaries obtained by exonuclease III digestion for the intact repressor-operator complex varied slightly from those reported by Shalloway et al. (1980). Asymmetric binding to operator by the core repressor fragment was suggested by differences in the 3′ boundary for the core compared to intact repressor on the promoter-distal side of the complex. A composite picture of repressor structure and function emerges from the protection studies reported here and in the accompanying paper. In light of these and other results, models for repressor binding are examined.  相似文献   

18.
We have generated more than 300 altered lac repressor proteins carrying known amino acid replacements, by employing nonsense mutations at 90 positions in the lacI gene together with eight different nonsense suppressors. This allows the substitution of lysine, serine, tyrosine, leucine and glutamine at virtually all of the respective positions in the repressor, and tryptophan at ten positions in the repressor. Since most of the nonsense sites have been correlated with specific codons in the lacI messenger RNA, in almost all cases the position of the substituted residue is known. This process results in the creation of a large number of mutant phenotypes. We have analyzed the effects of each substitution in vivo, and in several cases studied partially purified repressors in vitro. The properties of the altered proteins have been compared with the position and nature of each exchanged residue. We discuss the implications of these findings with regard to repressor structure in particular, and to protein structure in general. Further applications of the suppression method are also considered.  相似文献   

19.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

20.
Summary In the lac operon, the existence of a secondary repressor binding site, inside Z gene, had been inferred from in vitro binding studies (Reznikoff et al., 1974; Gilbert et al., 1975).A serie of deletions have been constructed from a lac transducing bacteriophage. Some of those deleted bacteriophages have still the property of derepressing a chromosomal lac operon, even though they do not contain any more the lac operator. This phenomenon is an indication that the secondary repressor binding site is also active in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号