首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the functional importance of the colonic guanylyl cyclase C (GCC) receptor in GCC receptor-deficient mice. Mice were anesthetized with pentobarbital sodium, and colon segments were studied in Ussing chambers in HCO3- Ringer under short-circuit conditions. Receptor-deficient mouse proximal colon exhibited similar net Na+ absorption, lower net Cl- absorption, and a negative residual ion flux (J(R)), indicating net HCO3- absorption compared with that in normal mice. In normal mouse proximal colon, mucosal addition of 50 nM Escherichia coli heat-stable enterotoxin (STa) increased the serosal-to-mucosal flux of Cl- (J(s-->m)(Cl)) and decreased net Cl- flux (J(net)(Cl)) accompanied by increases in short-circuit current (I(sc)), potential difference (PD), and tissue conductance (G). Serosal STa had no effect. In distal colon neither mucosal nor serosal STa affected ion transport. In receptor-deficient mice, neither mucosal nor serosal 500 nM STa affected electrolyte transport in proximal or distal colon. In these mice, 1 mM 8-bromo-cGMP produced changes in proximal colon J(s-->m)(Cl) and J(net)(Cl), I(sc), PD, G, and J(R) similar to mucosal STa addition in normal mice. We conclude that the GCC receptor is necessary in the mouse proximal colon for a secretory response to mucosal STa.  相似文献   

2.
The effect of prolactin (PRL) on ion transport across the rat colon epithelium was investigated using Ussing chamber technique. PRL (1 μg/ml) induced a sustained decrease in short-circuit current (I(sc)) in the distal colon with an EC(50) value of 100 ng/ml and increased I(sc) in the proximal colon with an EC(50) value of 49 ng/ml. In the distal colon, the PRL-induced decrease in I(sc) was not affected by Na(+) channel blocker amiloride or Cl(-) channel blockers, NPPB, DPC, or DIDS, added mucosally. However, the response was inhibited by mucosal application of K(+) channel blockers glibenclamide, quinidine, and chromanol 293B, whereas other K(+) channel blockers, Ba(2+), tetraethylammonium, clotrimazole, and apamin, failed to have effects. The PRL-induced decrease in I(sc) was also inhibited by Na(+)-K(+)-2Cl(-) transporter inhibitor bumetanide, Ba(2+), and chromanol 293B applied serosally. In the transverse and proximal colon, the PRL-induced increase in I(sc) was suppressed by DPC, glibenclamide, and bumetanide, but not by NPPB, DIDS, or amiloride. The PRL-induced changes in I(sc) in both distal and proximal colon were abolished by JAK2 inhibitor AG490, but not BAPTA-AM, the Ca(2+) chelating agent, or phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest a segment-specific effect of PRL in rat colon, by activation of K(+) secretion in the distal colon and activation of Cl(-) secretion in the transverse and proximal colon. Both PRL actions are mediated by JAK-STAT-dependent pathway, but not phosphatidylinositol 3-kinase pathway or Ca(2+) mobilization. These findings suggest a role of PRL in the regulation of electrolyte transport in mammalian colon.  相似文献   

3.
Carbonic anhydrase (CA) inhibition reduces NaCl absorption in rat distal ileum, a pH-sensitive, low CA activity tissue, and in distal colon, a CO(2)-sensitive, high CA activity tissue. We hypothesized that CA plays a non-catalytic role in NaCl absorption in these segments. Unidirectional fluxes of Na(+) and Cl(-), and total HCO(3)(-) generation (estimated as the sum of radiolabeled HCO(3)(-) and CO(2) produced from glucose) were measured in Ussing chambers in nominally CO(2), HCO(3)(-)-free HEPES Ringer. Measurements were made in the presence and absence of 0.1 mM methazolamide, a membrane-permeant CA inhibitor. Ringer pH reduction from 7.6 to 7.1 stimulated ileal but not colonic Na(+) and Cl(-) absorption. In the ileum, methazolamide reduced J(ms)(Na) and J(ms)(Cl) and caused net Cl(-) secretion at pH 7.6, and prevented the stimulatory effect of lowering pH. In the colon, methazolamide reduced Na(+) and Cl(-) absorption at pH 7.6. Total HCO(3)(-) generation was minimal in HEPES at pH 7.6 and 7.1 in both segments, was minimally affected by methazolamide, and did not account for the changes in Cl(-) absorption caused by pH or methazolamide. We conclude that CA plays a role in ileal and colonic NaCl absorption independent of its catalytic function.  相似文献   

4.
The role of Na(+) and Cl(-) in fluid reabsorption by the efferent ducts was examined by perfusing individual ducts in vivo with preparations of 160 mM NaCl in which the ions were replaced, together or individually, with organic solutes while maintaining the osmolality at 300 mmol/kg. Progressively replacing NaCl with mannitol reduced net reabsorption of water and the ions in a concentration-dependent manner, and caused net movement into the lumen at concentrations of NaCl less than 80 mM. The net rates of flux were lower for Na(+) than for Cl(-). In collectates, [Na(+)] was greater than [Cl(-)], indicating that Cl(-) transport is probably linked with another anion. Replacing either Na(+) or Cl(-) in perfusates (with choline and isethionate, respectively) while maintaining the other inorganic ion at 160 mM also reduced net rates of reabsorption in a concentration-dependent manner to zero when either ion was completely replaced. There were no significant differences in the osmolality of perfusate and collectate, and collectates contained a mean of 3.4 mM K(+), indicating a backflux of K(+) into the lumen. It is concluded that fluid reabsorption from the efferent ducts is dependent on the transport of both Na(+) and Cl(-) from the lumen (from a luminal concentration of at least 70-80 mM), and that Cl(-) transport is dependent on another anion. The epithelium is permeable to K(+) and has a higher permeability to a range of organic solutes (mannitol, choline, and isethionate) than epithelium in the proximal kidney tubules.  相似文献   

5.
Submucosal cholinergic and noncholinergic neurons in intestines have been shown to be involved in regulating epithelial transport functions, particularly stimulating Cl(-) secretion. This study investigates the role of submucosal cholinergic neurons in regulating electrogenic Na(+) absorption in distal colon. Amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux were measured in mucosal and mucosal-submucosal preparations mounted in Ussing chambers. In the mucosal preparation, carbachol (CCh) added to the serosal side inhibited amiloride-sensitive I(sc) and amiloride-sensitive (22)Na(+) absorption. The inhibitory effect of CCh was observed at approximately 0.1 microM, and maximum inhibition of approximately 70% was attained at approximately 30 microM (IC(50) = approximately 1 microM). CCh-induced inhibition of amiloride-sensitive I(sc) was almost totally abolished by 10 microM atropine. Treatment of the tissue with ionomycin markedly reduced amiloride-sensitive I(sc), but a subsequent addition of CCh further decreased it. Also, CCh still had an inhibitory effect, although significantly attenuated, after the tissue had been incubated with a low-Ca(2+) solution containing ionomycin and BAPTA-AM. Applying electrical field stimulation to submucosal neurons in the mucosal-submucosal preparation resulted in inhibition of amiloride-sensitive I(sc), approximately 33% of this inhibition being atropine sensitive. Physostigmine inhibited amiloride-sensitive I(sc), this effect being abolished by atropine. In conclusion, submucosal cholinergic and noncholinergic neurons were involved in inhibiting electrogenic Na(+) absorption in colon. This inhibition by cholinergic neurons was mediated by muscarinic receptor activation.  相似文献   

6.
IL-1beta is suspected to be involved in the diarrhea that always accompanies inflammatory bowel disease. This work was aimed at studying the in vivo effect of IL-1beta on the net absorption of fluid, Na(+) and Cl(-) from the rat colon, and at delineating its mechanism of action. Rats were injected i.p. with IL-1beta (1 mug/kg body weight) and the colon was perfused, four hours later, with Krebs-Ringer buffer. Net fluid absorption was calculated as the difference between the total volume of the buffer infused and collected per cm(2) of perfused intestine. Chloride in both buffers was determined by titration according to Mohr's method and net Cl- absorption was calculated in the same way. IL-1beta reduced the net absorption of water and chloride. The cytokine also reduced the percentage recovery of the Na(+)-K(+) ATPase activity in crude homogenates of membranes from surface and crypt colonic cells as revealed by the determination of inorganic phosphate released. In addition IL-1beta decreased the protein expression of the Na(+)-K(+) pump and increased that of the NaKCl(2) symporter. It is concluded that IL-1beta has a dual effect: it inhibits the Na(+)-K(+) pump and consequently NaCl absorption, and up-regulates the NaKCl(2) transporter and increases Cl(-) secretion. The ultimate effect of the two processes is a net decrease in Na(+)+ and Cl(-) absorption and an increase in water retention in the colon leading to the observed diarrhea in inflammatory bowel disease.  相似文献   

7.
Sodium/proton exchangers [Na(+)/H(+) (NHEs)] play an important role in salt and water absorption from the intestinal tract. To investigate the contribution of the apical membrane NHEs, NHE2 and NHE3, to electroneutral NaCl absorption, we measured radioisotopic Na(+) and Cl(-) flux across isolated jejuna from wild-type [NHE(+)], NHE2 knockout [NHE2(-)], and NHE3 knockout [NHE3(-)] mice. Under basal conditions, NHE(+) and NHE2(-) jejuna had similar rates of net Na(+) (approximately 6 microeq/cm(2) x h) and Cl(-) (approximately 3 microeq/cm(2) x h) absorption. In contrast, NHE3(-) jejuna had reduced net Na(+) absorption (approximately 2 microeq/cm(2) x h) but absorbed Cl(-) at rates similar to NHE(+) and NHE2(-) jejuna. Treatment with 100 microM 5-(N-ethyl-N-isopropyl) amiloride (EIPA) completely inhibited net Na(+) and Cl(-) absorption in all genotypes. Studies of the Na(+) absorptive flux (J) indicated that J in NHE(+) jejunum was not sensitive to 1 microM EIPA, whereas J in NHE3(-) jejunum was equally sensitive to 1 and 100 microM EIPA. Treatment with forskolin/IBMX to increase intracellular cAMP (cAMP(i)) abolished net NaCl absorption and stimulated electrogenic Cl(-) secretion in all three genotypes. Quantitative RT-PCR of epithelia from NHE2(-) and NHE3(-) jejuna did not reveal differences in mRNA expression of NHE3 and NHE2, respectively, when compared with jejunal epithelia from NHE(+) siblings. We conclude that 1) NHE3 is the dominant NHE involved in small intestinal Na(+) absorption; 2) an amiloride-sensitive Na(+) transporter partially compensates for Na(+) absorption in NHE3(-) jejunum; 3) cAMP(i) stimulation abolishes net Na(+) absorption in NHE(+), NHE2(-), and NHE3(-) jejunum; and 4) electroneutral Cl(-) absorption is not directly dependent on either NHE2 or NHE3.  相似文献   

8.
Bernick EP  Stiffler DF 《Peptides》2000,21(6):779-783
A possible role for the peptide hormone guanylin was investigated in frog skin (Rana pipiens) epithelium. Sodium and chloride fluxes in response to this peptide were evaluated in Ussing-type chambers. Net and unidirectional Na(+) fluxes were measured by using (22)Na(+) and atomic absorption analysis of total [Na(+)], whereas net Cl(-) fluxes were measured by using electrometric titration for [Cl(-)]. Mucosal application of guanylin (0.5-2.0 micromol/l) caused marked increases in serosal to mucosal net flux and efflux of Na(+). Serosal application of guanylin over the same dose range caused similar large increases in net serosal to mucosal (S-->M) Na(+) and Cl(-) flux as well as Na(+) efflux. Responses of Na(+) influx were small and inconsistent. When frog skin was bathed on the serosal side with Cl(-)-free Ringer's solution mucosal application of guanylin stimulated large efflux and S-->M net fluxes of Na(+). Serosal treatment yielded large Na(+) effluxes and S-->M Na(+) and Cl(-) net fluxes. When frog skin serosal surfaces were bathed with Na(+)- free Ringer's solution mucosal guanylin treatment had no effect but serosal treatment produced large S-->M Cl(-) net fluxes.  相似文献   

9.
The diarrhea associated with malabsorption of bile salts such as the secondary hydrophobic taurodeoxycholate (TDC) may be partly explained by the TDC-induced increase in colon Cl(-) secretion. We, therefore, investigated the effects of TDC (0.5-8 mM) on electrical parameters and electrolyte transport of rat proximal colon mucosa mounted in Ussing chambers. Colonic secretion, measured as short circuit current (I(SC)), progressively increased on mucosal incubation with TDC ranging 0.5-2 mM; up to TDC 2 mM, a spontaneous recovery toward control values with no changes in epithelial resistance (Rt), and lactate dehydrogenase (LDH) release was observed. In contrast, for TDC > 2 mM, I(SC) increased further and the effect was progressive and associated with a significant decrease in the Rt and increased LDH release, implying a cytolytic effect. Mucosal preincubation with the Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), fully prevented the precytolytic effect of TDC on I(SC). Serosal preincubation with furosemide, a Na(+)/K(+)/2Cl(-) cotransporter inhibitor, significantly reduced TDC-induced increase in I(SC). Inhibition of the basolateral Ca(2+)-dependent K(+) channel-rSK4-with serosal clotrimazole or incubation with mucosal Ca(2+)-free (EGTA) buffer completely prevented precytolytic TDC-induced increase in I(SC). In conclusion, Cl(-) secretion is activated in colon mucosa by TDC low concentrations; while at higher concentrations, a detergent cytotoxic effect intervenes. Activation of the Ca(2+)-dependent basolateral K(+) pathway, through TDC-induced apical Ca(2+) influx, provides the Na(+)/K(+)/2Cl(-) basolateral activation, thereby the driving force for the apical exit of Cl(-) ions. These findings further enhance the knowledge of the pathogenic mechanisms of diarrhea associated with bile salt malabsorption.  相似文献   

10.
The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was -6.8 mV (apical side), transepithelial resistance was 1,050 Omega.cm(2), and short-circuit current (I(sc)) was 8.1 microA/cm(2). Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kOmega.cm(2), respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of alpha-epithelial Na(+) channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na(+)-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na(+) flux (19 nmol.min(-1).cm(-2)) was two times as large as the reverse flux, and net transepithelial Na(+) flux was nearly double the amiloride-sensitive I(sc). In plain Ringer solution, the amiloride-sensitive I(sc) went toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl(-)-dependent I(sc) consistent with the stimulation of transepithelial Cl(-) secretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na(+) absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Cl(-) secretion activated by cAMP.  相似文献   

11.
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor). Suppressing amiloride-sensitive Na(+)/H(+) exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na(+)-K(+)-2Cl(-) channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na(+)/Ca(2+) exchanger extrudes Na(+) in exchange for Ca(2+), thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na(+)/Ca(2+) exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na(+)-K(+)-2Cl(-) channels. The Na(+)/Ca(2+) exchanger then extrudes Na(+) and increases endothelial Ca(2+). The increase in endothelial Ca(2+) causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.  相似文献   

12.
Low-affinity Na+ uptake in the halophyte Suaeda maritima   总被引:3,自引:0,他引:3       下载免费PDF全文
Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter-type transporter and pathway 2 by an AKT1-type channel.  相似文献   

13.
Na, Cl, and Water Transport by Rat Colon   总被引:9,自引:1,他引:8       下载免费PDF全文
Segments of the colon of anesthetized rats have been perfused in vivo with isotonic NaCl solutions and isotonic mixtures of NaCl and mannitol. Unidirectional and net fluxes of Na and Cl and the net fluxes of water and mannitol have been measured. Net water transport was found to depend directly on the rate of net Na transport. There was no water absorption from these isotonic solutions in the absence of net solute transport, indicating that water transport in the colon is entirely a passive process. At all NaCl concentrations studied, the lumen was found to be electrically negative to the surface of the colon by 5 to 15 mv. Na fluxes both into and out of the lumen were linear functions of NaCl concentration in the lumen. Net Na absorption from lumen to plasma has been observed to take place against an electrochemical potential gradient indicating that Na is actively transported. This active Na transport has been interpreted in terms of a carrier model system. Cl transport has been found to be due almost entirely to passive diffusion.  相似文献   

14.
5-Hydroxytryptamine (5-HT) can be released from mast cells and platelets through an IgE-dependent mechanism and may play a role in the pathogenesis of allergic bronchoconstriction. However, the effect of 5-HT on ion transport by the airway epithelium is still controversial. The objective of this study was to determine whether 5-hydroxytryptamine (5-HT) regulates NaCl transport by different mechanisms in the apical and basolateral membrane of tracheal epithelia. We studied the rat tracheal epithelium under short-circuit conditions in vitro. Short-circuit current (I(sc)) was measured in rat tracheal epithelial monolayers cultured on porous filters. 5-HT inhibited Na(+) absorption [measured via Na(+) short-circuit current (I(Na)(sc))] in the apical membrane and stimulated Cl(-) secretion [measured via Cl(-) short-circuit current (I(Cl)(sc))] in the basolateral membrane. Functional localization using selective 5-HT agonists and antagonists suggest that I(Cl)(sc)is stimulated by the basolateral membrane-resident 5-HT receptors, whereas I(Na)(sc) is inhibited by the apical membrane-resident 5-HT2 receptors. The basolateral addition of 5-HT increases intracellular cAMP content, but its apical addition does not. The addition of BAPTA/AM blocked the decrease of I(Na)(sc)which was induced by the apical addition of 5-HT, and 5-HT increased intracellular Ca concentrations. These results indicate that 5-HT differentially affects I(Na)(sc)and I(Cl)(sc)across rat tracheal monolayers through interactions with distinct receptors in the apical and the basolateral membrane. These effects may result in an increase of water movement towards the airway lumen.  相似文献   

15.
Freshwater (FW) rainbow trout (Oncorhynchus mykiss) urinary bladders mounted in vitro under symmetrical saline conditions displayed electroneutral active absorption of Na(+) and Cl(-) from the mucosal side; the transepithelial potential (V(t)) was 0.1 mV, and the short-circuit current was less than 1 microA cm(-2). Removal of Na(+) from mucosal saline decreased Cl(-) absorption by 56% and removal of Cl(-) decreased Na(+) absorption by 69%. However, active net absorption of both Na(+) and Cl(-) was not abolished when Cl(-) or Na(+) was replaced with an impermeant ion (gluconate or choline, respectively). Under physiological conditions with artificial urine (?Na(+) = 2.12 mM, ?Cl(-) = 3.51 mM) bathing the mucosal surface and saline bathing the serosal surface, transepithelial potential (V(t)) increased to a serosal positive approximately +7.6 mV. Unidirectional influx rates of both Na(+) and Cl(-) were 10-20-fold lower but active absorption of both ions still occurred according to the Ussing flux ratio criterion. Replacement of Na(+) with choline, or Cl(-) with gluconate, in the mucosal artificial urine yielded no change in unidirectional influx of Cl(-) or Na(+), respectively. However, kinetic analyses indicated a decrease in maximum Na(+) transport rate (J(max)) of 66% with no change in affinity (K(m)) in the low Cl(-) mucosal solution relative to the control solution. Similarly, there was a 79% decrease in J(max) values for Cl(-), again with no change in K(m), in the low-Na(+) mucosal bathing. The mucosal addition of DIDS, amiloride or bumetanide (10(-4) M) had no effect on either Na(+) or Cl(-) transport, under either symmetrical saline or artificial urine/saline conditions. Addition of the three drugs simultaneously (10(-4) M), or chlorothiazide (10(-3) M), under symmetrical saline conditions also had no effect on Na(+) or Cl(-) transport rates. Cyanide (10(-3) M) addition to mucosal artificial urine caused a slowly developing decrease of Na(+) influx to 59% and Cl(-) influx to 50% in the period after drug addition. Na(+) and Cl(-) reabsorption appears to be a partially coupled process in the urinary bladder of O. mykiss; transport mechanisms are both dependent upon and independent of the other ion.  相似文献   

16.
The effect of dimethyl-amiloride (DMA), a selective Na+/H+ exchange blocker, was studied on electrolyte net fluxes and unidirectional fluxes of Na and Cl at four levels of rat intestine in vivo in basal conditions. DMA was applied intraluminally at concentrations of 10(-4) and 10(-3) M in the model of ligated loops prepared from duodenum, proximal jejunum, distal ileum and ascending colon in fasted Sprague Dawley rats. Two iso-osmotic test solutions were used: (1) hypo-ionic: Na+ 80 mM and (2) iso-ionic: Na+ 148 mM, pH 8.2. 22Na was placed in the loop and 36Cl was given by intravenous route at the beginning of the experiment. Na+/H+ was calculated by two different means, one was based on pH variation following amiloride inhibition of Na influx, the other on the calculation of the passive Na transport. The quantitative evaluation shows that Na/H exchange largely contributes to the electroneutral absorption and luminal pH regulation. The exchanger activity decreases from duodenum, jejunum, ileum and colon where it is completed by K/H exchange to assure low colon luminal pH.  相似文献   

17.
Extracellular ATP regulates a variety of functions in epithelial tissues by activating the membrane P2-receptor. The purpose of this study was to investigate the autocrine/paracrine regulation by luminal ATP of electrogenic amiloride-sensitive Na(+) absorption in the distal colon from guinea pigs treated with aldosterone by measuring the amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux in vitro with the Ussing chamber technique. ATP added to the luminal side inhibited the amiloride-sensitive I(sc) and (22)Na(+) absorption to a similar degree. The concentration dependence of the inhibitory effect of ATP on amiloride-sensitive I(sc) had an IC(50) value of 20-30 microM, with the maximum inhibition being approximately 50%. The effects of different nucleotides and of a nucleoside were also studied, the order of potency being ATP = UTP > ADP > adenosine. The effects of ATP were slightly, but significantly, reduced in the presence of suramin in the luminal solution. The inhibitory effect of luminal ATP was more potent in the absence of both Mg2+ and Ca2+ from the luminal solution. Pretreatment of the tissue with ionomycin or thapsigargin in the absence of serosal Ca2+ did not affect the percent inhibition of amiloride-sensitive I(sc) induced by ATP. Mechanical perturbation with a hypotonic luminal solution caused a reduction in amiloride-sensitive I(sc), this effect being prevented by the presence of hexokinase, an ATP-scavenging enzyme. These results suggest that ATP released into the luminal side by hypotonic stimulation could exert an inhibitory effect on the electrogenic Na(+) absorption. This effect was probably mediated by a P2Y(2) receptor on the apical membrane of colonic epithelial cells, and a change in the intracellular Ca2+ concentration may not be necessary for this process.  相似文献   

18.
We investigated the role of NO (nitric oxide) in the isolated intestine of the sea water adapted eel, by testing the effect of various donors on I(sc) (short-circuit current), due to net Cl(-) absorption in the control conditions. We found that the endogenous NO-synthase substrate l-arginine as well as two different NO donors, SNP (sodium nitroprusside) and SIN-1 (3-morpholinosydnonimine), produced a slow and gradual decrease of I(sc). The effect of SNP was reduced by the pretreatment with ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one), a specific inhibitor of the soluble guanylyl cyclase, suggesting the involvement of cGMP (cyclic GMP) in some physiological actions of NO. The effect of the NO donors on I(sc) was similar to that observed when the tissues were perfused with solution in which the HCO(3)(-) buffer was substituted with Hepes buffer. In addition the NO donors produced a negligible effect on I(sc) when the tissues were perfused with Hepes buffer or in the presence of bilateral SITS(4-Acetoamido-4'-iso-thiocyanatostilbene-2,2'disulphonic acid), an inhibitor of the HCO(3)(-) transport mechanisms, operating on both cell membranes of the eel enterocyte and responsible for HCO(3)(-) uptake by the cell. Based on these observations we suggest that NO regulates I(sc) and hence the transepithelial ion transport indirectly by modulating the endocellular concentration of HCO(3)(-) and/or H(+). In addition it is likely that NO modulates the permeability of the paracellular pathway since SNP produced also an increase of the tissue conductance and a decrease of the magnitude of the dilution potential.  相似文献   

19.
Colitis in interleukin-2-deficient (IL-2(-/-)) mice resembles ulcerative colitis in humans. We studied epithelial transport and barrier function in IL-2(-/-) mice and used this model to characterize mechanisms of diarrhea during intestinal inflammation. (22)Na(+) and (36)Cl(-) fluxes were measured in proximal colon. Net Na(+) flux was reduced from 4.0 +/- 0.5 to 0.8 +/- 0.5 micromol.h(-1).cm(-2), which was paralleled by diminished mRNA and protein expression of the Na(+)/H(+) exchanger NHE3. Net Cl(-) flux was also decreased from 2.2 +/- 1.6 to -2.7 +/- 0.6 micromol.h(-1).cm(-2), indicating impaired Na(+)-Cl(-) absorption. In distal colon, aldosterone-induced electrogenic Na(+) absorption was 6.1 +/- 0.9 micromol.h(-1).cm(-2) in controls and was abolished in IL-2(-/-) mice. Concomitantly, mRNA expression of beta- and gamma-subunits of the epithelial sodium channel (ENaC) was reduced. Epithelial barrier was studied in proximal colon by impedance technique and mannitol fluxes. In contrast to ulcerative colitis, epithelial resistance was increased and mannitol fluxes were decreased in IL-2(-/-) mice. This was in accord with the findings of reduced ion transport as well as increased expression of tight junction proteins occludin and claudin-1, -2, -3, and -5. In conclusion, the IL-2(-/-) mucosa exhibits impaired electroneutral Na(+)-Cl(-) absorption and electrogenic Na(+) transport due to reduced mRNA and protein expression of NHE3 and ENaC beta- and gamma-subunit mRNA. This represents a model of early intestinal inflammation with absorptive dysfunction due to impaired transport protein expression/function while epithelial barrier is still intact. Therefore, this model is ideal to study regulation of transporter expression independent of barrier defects.  相似文献   

20.
Intestinal water absorption from select carbohydrate solutions in humans.   总被引:3,自引:0,他引:3  
Eight men positioned a triple-lumen tube in the duodenojejunum. By use of segmental perfusion, 2, 4, 6, or 8% solutions of glucose (111-444 mM), sucrose (55-233 mM), a maltodextrin [17-67 mM, avg. chain length = 7 glucose units (7G)], or a corn syrup solid [40-160 mM, avg. chain length = 3 glucose units (3G)] were perfused at 15 ml/min for 70 min after a 30-min equilibration period. All solutions were made isotonic with NaCl, except 6 and 8% glucose solutions, which were hypertonic. An isotonic NaCl solution was perfused as control. Water absorption (range: 9-15 ml.h-1.cm-1) did not differ for the 2, 4, and 6% CHO solutions but was greater (P < 0.05) than absorption from control (3.0 +/- 2.2 ml.h-1.cm-1). The 8% glucose and 3G solutions reduced (P < 0.05) net water flux compared with their 2, 4, and 6% solutions, but 8% sucrose and 8% 7G solutions promoted water absorption equivalent to lower CHO concentrations. Water absorption was independent of [Na+] in the original solution. In the test segment, 1) Na+ flux correlated with net water flux (r = 0.72, P < 0.01), K+ (r = 0.78, P < 0.01), and [Na+] (r = 0.68, P < 0.001); 2) Na+ absorption occurred at luminal [Na+] as low as 50 mM; 3) glucose transport increased linearly over the luminal concentration range of 40-180 mM; and 4) net water flux was similar over a range of glucose-to-Na+ concentration ratios of 0.4:1 to 3.5:1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号