首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt signaling has been implicated in the self-renewal of hematopoietic stem cells (HSCs). Secreted frizzled-related proteins (SFRPs) are a family of soluble proteins containing a region homologous to a receptor for Wnt, Frizzled, and are thought to act as endogenous modulators for Wnt signaling. This study examined the role of SFRPs in HSC regulation. Among the four family members, SFRP-1 and SFRP-2 are specifically induced in the bone marrow in response to myelosuppression, and immunostaining revealed that both proteins were expressed in osteoblasts. Interestingly, SFRP-1 reduced the number of multipotent progenitors in in vitro culture of CD34KSL cells, while SFRP-2 did not. Furthermore, SFRP-1 compromised the long-term repopulating activity of HSCs, whereas SFRP-2 did not affect or even enhanced it in the same setting. These results indicate that although both SFRP-1 and SFRP-2 act as inhibitors for Wnt signaling in vitro, they differentially affect the homeostasis of HSCs.  相似文献   

2.
Wnt signaling is involved in numerous processes during vertebrate CNS development. In this study, we used conditional Cre/loxP system in mouse to ablate or activate beta-catenin in the telencephalon in two time windows: before and after the onset of neurogenesis. We show that beta-catenin mediated Wnt signals are required to maintain the molecular identity of the pallium. Inactivation of beta-catenin in the telencephalon before neurogenesis results in downregulated expression of dorsal markers Emx1, Emx2 and Ngn2, and in ectopic up-regulation of ventral markers Gsh2, Mash1 and Dlx2 in the pallium. In contrast, ablation of ss-catenin after the onset of cortical neurogenesis (E11.5) does not result in a dorso-ventral fate shift. In addition, activation of canonical Wnt signaling in the subpallium leads to a repression of ventral telencephalic cell identities as shown by the down-regulation of subpallial markers Dlx2, Nkx2.1, Gsh2, Olig2 and Mash1. This was accompanied with an expansion of dorsal identities ventrally as shown by the expanded expression domains of pallial markers Pax6 and Ngn2. Thus, our data suggest that canonical Wnt signals are involved in maintaining the identity of the pallium by controlling expression of dorsal markers and by suppressing ventral programs from being activated in pallial progenitor cells.  相似文献   

3.

Background

Wnt signals are important for embryonic stem cells renewal, growth and differentiation. Although 19 Wnt, 10 Frizzled genes have been identified in mammals, their expression patterns in stem cells were largely unknown.

Results

We conducted RNA expression profiling for the Wnt ligands, their cellular receptors "Frizzleds" and co-receptors LRP5/6 in human embryonic stem cells (H7), human bone marrow mesenchymal cells, as well as mouse totipotent F9 teratocarcinoma embryonal cells. Except failing to express Wnt2 gene, totipotent F9 cells expressed RNA for all other 18 Wnt genes as well as all 10 members of Frizzled gene family. H7 cells expressed RNA for each of the 19 Wnt genes. In contrast, human mesenchymal cells did not display detectable RNA expression of Wnt1, Wnt8a, Wnt8b, Wnt9b, Wnt10a, and Wnt11. Analysis of Frizzled RNAs in H7 and human mesechymal cells revealed expression of 9 members of the receptor gene family, except Frizzled8. Expression of the Frizzled co-receptor LRP5 and LRP6 genes were detected in all three cell lines. Human H7 and mouse F9 cells express nearly a full complement of both Wnts and Frizzleds genes. The human mesenchymal cells, in contrast, have lost the expression of six Wnt ligands, i.e. Wnt1, 8a, 8b, 9b, 10a and 11.

Conclusion

Puripotent human H7 and mouse F9 embryonal cells express the genes for most of the Wnts and Frizzleds. In contrast, multipotent human mesenchymal cells are deficient in expression of Frizzled-8 and of 6 Wnt genes.  相似文献   

4.
The hippocampus develops from the medial wall of the forming cerebral cortex during embryonic life. Morphogenic signals from the Wnt pathway regulate several events during hippocampal development (Galceran et al.: Development 127:469-482, 2000; Lee et al.: Development 127:457-467, 2000; Zhou et al.: J Neurosci 24:121-126, 2004) and we have previously shown that Wnt receptors from the Frizzled (Fzd) family are expressed in discreet cortical domains during development (Kim et al.: Mech Dev 103:167-172, 2001). We generated transgenic mice using the putative control elements of the Fzd9 gene, normally selectively expressed in the developing and adult hippocampus, driving expression of a marker gene. These mice express LacZ in the brain in the same developmental distribution as endogenous Fzd protein. Postnatally, expression remains strong in the dendritic fields of hippocampal principal cells as well as hippocampal efferent axons. These mice provide a genetic and anatomic tool for analyzing development and reorganization in the hippocampus.  相似文献   

5.
Ligand receptor interactions in the Wnt signaling pathway in Drosophila   总被引:1,自引:0,他引:1  
Secreted Wnt proteins have numerous signaling functions during development, mediated by Frizzled molecules that act as Wnt receptors on the cell surface. In the genome of Drosophila, seven Wnt genes (including wingless; wg), and five frizzled genes have been identified. Relatively little is known about signaling and binding specificities of different Wnt and Frizzled proteins. We have developed an assay to determine the strength of binding between membrane-tethered Wnts and ligand binding domains of the Frizzled receptors. We found a wide spectrum of binding affinities, reflecting known genetic interactions. Most Wnt proteins can bind to multiple Frizzleds and vice versa, suggesting redundancy in vivo. In an extension of these experiments, we tested whether two different subdomains of the Wg protein would by themselves bind to Frizzled and generate a biological response. Whereas these two separate domains are secreted from cells, suggesting that they form independently folded parts of the protein, they were only able to evoke a response when co-transfected, indicating that both are required for function. In addition to the Frizzleds, members of the LRP family (represented by the arrow gene in Drosophila) are also necessary for Wnt signal transduction and have been postulated to act as co-receptors. We have therefore examined whether a soluble form of the Arrow molecule can bind to Wingless and Frizzled, but no interactions were detected.  相似文献   

6.
7.
Wnt signaling plays an important role in regulating cortical and hippocampal development, but many of the other molecular mechanisms underlying dorsal telencephalic development are largely unknown. We are taking advantage of the highly regionalized expression patterns of signaling components of the Wnt pathway to generate new mouse lines that will be useful for studying forebrain development. Here, we describe a transgenic mouse line where Cre is driven by the promoter of the Wnt receptor, Frizzled10. In these mice, Cre activity is mainly detected in the dorsal telencephalon during development and is confined to the pyramidal cell fields in the adult hippocampus. The Cre recombinase has very high efficiency when assayed by crossing the transgenic line with the ROSA26 reporter line. Thus, this Cre line will be useful for the study of dorsal telencephalic development and conditional inactivation of target genes in the cortex and hippocampus.  相似文献   

8.
9.
Embryonic stem (ES) cells have the potential to develop into various cell lineages including hemangioblasts (Flk1+), a common progenitor for hematopoietic and vascular endothelial cells. Previous studies indicate that Flk1+ cells, a marker for hemangioblast, can be derived from ES cell and that Flk1+ can be differentiated into hematopoietic or endothelial cells depending on culture conditions. We developed an improved in vitro system to generate Flk1+-enriched cultures from mouse ES cells and used this in vitro system to study the role of Wnt signalling in early endothelial progenitor cells. We determined the expression of the Wnt and Frizzled genes in Flk1+ cells derived from mouse ES cells. RT-PCR analyses identified significantly higher expression of non-canonical Wnt5a and Wnt11 genes in Flk1+ cells compared to Flk1- cells. In contrast, expression of canonical Wnt3a gene was reduced in Flk1+ cells. In addition, Frizzled2, Frizzled5 and Frizzled7 genes were also expressed at a higher level in Flk1+ cells. The differential expression of Wnt and Frizzled genes in Flk1+ cells provides a novel insight into the role of non-canonical Wnt signalling in vascular endothelial fate determination.  相似文献   

10.
Components of the Wnt signaling pathway are expressed in a tightly regulated and spatially specific manner during development of the forebrain, and Wnts are key regulators of regional forebrain identity. Wnt signaling from the cortical hem regulates the expansion and cell-type specification of the adjacent neuroepithelium and, in conjunction with Bmp, Fgf, and Shh signaling, controls dorsal-ventral forebrain patterning. Subsequently, Wnt signaling dynamically regulates the behavior of cortical progenitor cells, initially promoting the expansion of radial glia progenitor cells and later inducing neurogenesis by promoting terminal differentiation of intermediate progenitor cells. A role for Wnt signaling in cell-type specification has also been proposed.  相似文献   

11.
Secreted Frizzled Related Proteins (SFRPs) are a family of soluble molecules structurally related to the Wnt receptors. Functional analysis in different vertebrate species suggests that these molecules are multifunctional modulators of Wnt and possibly other signalling pathways. Sfrp1 a member of this family, is strongly expressed throughout embryonic development in different vertebrate species. Its function is, however, poorly understood. To address the role of this protein at early stages of embryonic development, we have used the medaka fish (Oryzias latipes) as a model system. Here, we describe the characterisation and the expression analysis of olSfrp1. We also show that morpholino-based interference with olSfrp1 expression results in embryos with a reduced eye field, a phenotype that, in the most affected embryos, is associated with a shortening and widening of the A-P axis. Because the expression of posterior diencephalic markers is unchanged but that of rostral telencephalic ones is expanded, we propose that olSfrp1 is needed for a proper establishment of the eye field within the forebrain. In addition, olSfrp1 may contribute to the control of mesodermal convergence extension movements that take place during gastrulation.  相似文献   

12.
Cells at the anterior boundary of the neural plate (ANB) can induce telencephalic gene expression when transplanted to more posterior regions. Here, we identify a secreted Frizzled-related Wnt antagonist, Tlc, that is expressed in ANB cells and can cell nonautonomously promote telencephalic gene expression in a concentration-dependent manner. Moreover, abrogation of Tlc function compromises telencephalic development. We also identify Wnt8b as a locally acting modulator of regional fate in the anterior neural plate and a likely target for antagonism by Tlc. Finally, we show that tlc expression is regulated by signals that establish early antero-posterior and dorso-ventral ectodermal pattern. From these studies, we propose that local antagonism of Wnt activity within the anterior ectoderm is required to establish the telencephalon.  相似文献   

13.
Dual roles of Wnt signaling during chondrogenesis in the chicken limb   总被引:17,自引:0,他引:17  
Long bones of the appendicular skeleton are formed from a cartilage template in a process known as endochondral bone development. Chondrocytes within this template undergo a progressive program of differentiation from proliferating to postmitotic prehypertrophic to hypertrophic chondrocytes, while mesenchymal cells immediately surrounding the early cartilage template form the perichondrium. Recently, members of the Wnt family of secreted signaling molecules have been implicated in regulating chondrocyte differentiation. We find that Wnt-5a, Wnt-5b and Wnt-4 genes are expressed in chondrogenic regions of the chicken limb: Wnt-5a is expressed in the perichondrium, Wnt-5b is expressed in a subpopulation of prehypertrophic chondrocytes and in the outermost cell layer of the perichondrium, and Wnt-4 is expressed in cells of the joint region. Misexpression experiments demonstrate that two of these Wnt molecules, Wnt-5a and Wnt-4, have opposing effects on the differentiation of chondrocytes and that these effects are mediated through divergent signaling pathways. Specifically, Wnt-5a misexpression delays the maturation of chondrocytes and the onset of bone collar formation, while Wnt-4 misexpression accelerates these two processes. Misexpression of a stabilized form of beta-catenin also results in accelerated chondrogenesis, suggesting that a beta-catenin/TCF-LEF complex is involved in mediating the positive regulatory effect of Wnt-4. A number of the genes involved in Wnt signal tranduction, including two members of the Frizzled gene family, which are believed to encode Wnt-receptors, show very dynamic and distinct expression patterns in cartilaginous elements of developing chicken limbs. Misexpression of putative dominant-negative forms of the two Frizzled proteins results in severe shortening of the infected cartilage elements due to a delay in chondrocyte maturation, indicating that an endogenous Wnt signal does indeed function to promote chondrogenic differentiation.  相似文献   

14.
Canonical Wnt signaling is critical to estrogen-mediated uterine growth   总被引:1,自引:0,他引:1  
Major biological effects of estrogen in the uterus are thought to be primarily mediated by nuclear estrogen receptors, ERalpha and ERbeta. We show here that estrogen in an ER-independent manner rapidly up-regulates the expression of Wnt4 and Wnt5a of the Wnt family and frizzled-2 of the Wnt receptor family in the mouse uterus. One of the mechanisms by which Wnts mediate canonical signaling involves stabilization of intracellular beta-catenin. We observed that estrogen treatment prompts nuclear localization of active beta-catenin in the uterine epithelium. We also found that adenovirus mediated in vivo delivery of SFRP-2, a Wnt antagonist, down-regulates estrogen-dependent beta-catenin activity without affecting some of the early effects (water imbibition and angiogenic markers) and inhibits uterine epithelial cell growth, suggesting that canonical Wnt signaling is critical to estrogen-induced uterine growth. Our present results provide evidence for a novel role of estrogen that targets early Wnt/beta-catenin signaling in an ER-independent manner to regulate the late uterine growth response that is ER dependent.  相似文献   

15.
Wnt-induced signaling via beta-catenin plays crucial roles in animal development and tumorigenesis. Both a seven-transmembrane protein in the Frizzled family and a single transmembrane protein in the LRP family (LDL-receptor-related protein 5/6 or Arrow) are essential for efficiently transducing a signal from Wnt, an extracellular ligand, to an intracellular pathway that stabilizes beta-catenin by interfering with its rate of destruction. However, the molecular mechanism by which these two types of membrane receptors synergize to transmit the Wnt signal is not known. We have used mutant and chimeric forms of Frizzled, LRP and Wnt proteins, small inhibitory RNAs, and assays for beta-catenin-mediated signaling and protein localization in Drosophila S2 cells and mammalian 293 cells to study transmission of a Wnt signal across the plasma membrane. Our findings are consistent with a mechanism by which Wnt protein binds to the extracellular domains of both LRP and Frizzled receptors, forming membrane-associated hetero-oligomers that interact with both Disheveled (via the intracellular portions of Frizzled) and Axin (via the intracellular domain of LRP). This model takes into account several observations reported here: the identification of intracellular residues of Frizzled required for beta-catenin signaling and for recruitment of Dvl to the plasma membrane; evidence that Wnt3A binds to the ectodomains of LRP and Frizzled; and demonstrations that a requirement for Wnt ligand can be abrogated by chimeric receptors that allow formation of Frizzled-LRP hetero-oligomers. In addition, the beta-catenin signaling mediated by ectopic expression of LRP is not dependent on Disheveled or Wnt, but can also be augmented by oligomerization of LRP receptors.  相似文献   

16.
17.
The Wnt genes are known to play fundamental roles during patterning and development of a number of embryonic structures. Receptors for Wnts are members of the Frizzled family of proteins containing a cysteine-rich domain (CRD) that binds the Wnt protein. Recently several secreted frizzled-related proteins (Sfrps) that also contain a CRD have been identified and some of these can both bind and antagonise Wnt proteins. In this paper we report the expression patterns of the chick homologues of Frzb, a known Wnt antagonist, and Sfrp-2. Both genes are expressed in areas where Wnts are known to play a role in development, including the neural tube, myotome, cartilage, and sites of epithelial-mesenchymal interactions. Initially, Sfrp-2 and Frzb are expressed in overlapping areas in the neural plate and neural tube, whereas later, they have distinct patterns. In particular Sfrp-2 is associated with myogenesis while Frzb is associated with chondrogenesis, suggesting that they play different roles during development. Finally, we have used the early Xenopus embryo as an in vivo assay to show that Sfrp-2, like Frzb, is a Wnt antagonist. These results suggest that Sfrp-2 and Frzb may function in the developing embryo by modulating Wnt signalling.  相似文献   

18.
G protein-coupled receptors (GPCRs) represent the biggest transmembrane receptor family. The Frizzled group of GPCRs is evolutionarily conserved and serves to transduce signals from the Wnt-type lipoglycoprotein growth factors. The Wnt/Frizzled signaling cascades are repeatedly used during animal development and are mostly silent in the adult. Improper activation of these cascades, e.g. through somatic mutation, underlies cancer development in various tissues. Our research over the past years has identified the trimeric G proteins as crucial transducers of the Wnt/Frizzled cascades in insect and mammalian cells. The current mini-review summarizes our findings on the role of G proteins in Wnt/Frizzled signaling, as well as on identification of other signaling intermediates in this physiologically and pathologically important type of intracellular signal transduction.  相似文献   

19.
The vertebrate eye consists of multiple tissues with distinct embryonic origins. To ensure formation of the eye as a functional organ, development of ocular tissues must be precisely coordinated. Besides intrinsic regulators, several extracellular pathways have been shown to participate in controlling critical steps during eye development. Many components of Wnt/Frizzled signaling pathways are expressed in developing ocular tissues, and substantial progress has been made in the past few years in understanding their function during vertebrate eye development. Here, I summarize recent work using functional experiments to elucidate the roles of Wnt/Frizzled pathways during development of ocular tissues in different vertebrates.Key words: eye, retina, ciliary body, lens, vasculature, Wnt, frizzled, mouse, frog, chick, zebrafish  相似文献   

20.
Regulation of Wnt signaling during adipogenesis   总被引:17,自引:0,他引:17  
We have identified Wnt10b as a potent inhibitor of adipogenesis that must be suppressed for preadipocytes to differentiate in vitro. Here, we demonstrate that a specific inhibitor of glycogen synthase kinase 3, CHIR 99021, mimics Wnt signaling in preadipocytes. CHIR 99021 stabilizes free cytosolic beta-catenin and inhibits adipogenesis by blocking induction of CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. Preadipocyte differentiation is inhibited when 3T3-L1 cells are exposed to CHIR 99021 for any 24 h period during the first 3 days of adipogenesis. Consistent with this time frame of inhibition, expression of Wnt10b mRNA is suppressed upon induction of differentiation, with a 50% decline by 6 h and complete inhibition by 36 h. Of the agents used to induce differentiation, exposure of 3T3-L1 cells to methyl-isobutylxanthine or cAMP is sufficient to suppress expression of Wnt10b mRNA. Inhibition of adipogenesis by Wnt10b is likely mediated by Wnt receptors, Frizzled 1, 2, and/or 5, and co-receptors low density lipoprotein receptor-related proteins 5 and 6. These receptors, like Wnt10b, are highly expressed in preadipocytes and stromal vascular cells. Finally, we demonstrate that disruption of extracellular Wnt signaling by expression of secreted Frizzled related proteins causes spontaneous adipocyte conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号