首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The human gastrointestinal tract represents an environment which is a densely populated home for a microbiota that has evolved to positively contribute to host health. At birth the essentially sterile gastrointestinal tract (GIT) is rapidly colonized by microorganisms that originate from the mother and the surrounding environment. Within a short timeframe a microbiota establishes within the (breastfed) infant's GIT where bifidobacteria are among the dominant members, although their numerical dominance disappears following weaning. The numerous health benefits associated with bifidobacteria, and the consequent commercial relevance resulting from their incorporation into functional foods, has led to intensified research aimed at the molecular understanding of claimed probiotic attributes of this genus. In this review we provide the current status on the diversity and ecology of bifidobacteria. In addition, we will discuss the molecular mechanisms that allow this intriguing group of bacteria to colonize and persist in the GIT, so as to facilitate interaction with its host.  相似文献   

2.
Probiotic bacteria harbor effector molecules that confer health benefits, but also adaptation factors that enable them to persist in the gastrointestinal tract of the consumer. To study these adaptation factors, an antibiotic-resistant derivative of the probiotic model organism Lactobacillus plantarum WCFS1 was repeatedly exposed to the mouse digestive tract by three consecutive rounds of (re)feeding of the longest persisting colonies. This exposure to the murine intestine allowed the isolation of intestine-adapted derivatives of the original strain that displayed prolonged digestive tract residence time. Re-sequencing of the genomes of these adapted derivatives revealed single nucleotide polymorphisms as well as a single nucleotide insertion in comparison with the genome of the original WCFS1 strain. Detailed in silico analysis of the identified genomic modifications pinpointed that alterations in the coding regions of genes encoding cell envelope associated functions and energy metabolism appeared to be beneficial for the gastrointestinal tract survival of L. plantarum WCFS1. This work demonstrates the feasibility of experimental evolution for the enhancement of the gastrointestinal residence time of probiotic strains, while full-genome re-sequencing of the adapted isolates provided clues towards the bacterial functions involved. Enhanced gastrointestinal residence is industrially relevant because it enhances the efficacy of the delivery of viable probiotics in situ.  相似文献   

3.
Antibiotics as growth promotants: mode of action   总被引:5,自引:0,他引:5  
Recent concerns about the use of growth-promoting antibiotics in pig diets have renewed interest in the immunologic and growth-regulating functions of the gastrointestinal (GI) tract. The numerically dense and metabolically active microbiota ofthe pig GI tract represents a key focal point for such questions. The intestinal microbiota is viewed typically as a beneficial entity for the host. Intestinal bacteria provide both nutritional and defensive functions for their host. However, the host animal invests substantially in defensive efforts to first sequester gut microbes away from the epithelial surface, and second to quickly mount immune responses against those organisms that breach epithelial defenses. The impact of host responses to gut bacteria and their metabolic activities require special consideration when viewed in the context of pig production in which efficiency of animal growth is a primary objective. Here, we summarize the working hypothesis that antibiotics improve the efficiency of animal growth via their inhibition of the normal microbiota, leading to increased nutrient utilization and a reduction in the maintenance costs ofthe GI system. In addition, novel molecular ecology techniques are described that can serve as tools to uncover the relationship between intestinal microbiology and growth efficiency.  相似文献   

4.
The safety status of lactic acid bacteria (LAB) and their capacity to survive the passage through the gastrointestinal tract (GI tract) have rendered them excellent candidates for the production of therapeutic proteins and their delivery in situ to the GI tract. During the past two decades, major health benefits of mucosally administered recombinant LAB have been successfully demonstrated, predominantly using animal models. However, the field has recently moved into the era of human clinical trials. In this review, we provide a timely update on the recent important advances made in this field, and outline the potential of recombinant LAB as therapeutic tools for their safe and efficient use in human health.  相似文献   

5.
Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.  相似文献   

6.
The Prevotellas comprise a diverse group of bacteria that has received surprisingly limited attention at the whole genome-sequencing level. In this communication, we present the comparative analysis of the genomes of Prevotella ruminicola 23 (GenBank: CP002006) and Prevotella bryantii B14 (GenBank: ADWO00000000), two gastrointestinal isolates. Both P. ruminicola and P. bryantii have acquired an extensive repertoire of glycoside hydrolases that are targeted towards non-cellulosic polysaccharides, especially GH43 bifunctional enzymes. Our analysis demonstrates the diversity of this genus. The results from these analyses highlight their role in the gastrointestinal tract, and provide a template for additional work on genetic characterization of these species.  相似文献   

7.
T Ito  Y Sakaki 《Nucleic acids research》1988,16(19):9177-9184
A novel procedure has been developed for selective cloning of NotI linking fragments from mammalian genomes. Since the majority of the NotI sites in mammalian genomes are considered to be localized in so-called HTF (HpaII tiny fragment) islands, an HTF library was constructed as an initial step to enrich the NotI sites. The plasmid DNAs were isolated en masse from the HTF library and digested with NotI. Linearized plasmid DNAs derived from NotI linking clones were efficiently separated from undigested circular DNAs by an unique pulsed field polyacrylamide gel electrophoresis (PF-PAGE). The linear DNAs were eluted from the gel, recircularized with T4 DNA ligase and introduced into E. coli cells. About 95% of the transformants were found to contain NotI linking fragments. The procedure will thus provide a simple and useful way of collecting NotI linking fragments for long range physical mapping of mammalian genomes.  相似文献   

8.
The microbiota inhabiting the mammalian gut is a functional organ that provides a number of services for the host. One factor that may regulate the composition and function of gut microbial communities is dietary toxins. Oxalate is a toxic plant secondary compound (PSC) produced in all major taxa of vascular plants and is consumed by a variety of animals. The mammalian herbivore Neotoma albigula is capable of consuming and degrading large quantities of dietary oxalate. We isolated and characterized oxalate-degrading bacteria from the gut contents of wild-caught animals and used high-throughput sequencing to determine the distribution of potential oxalate-degrading taxa along the gastrointestinal tract. Isolates spanned three genera: Lactobacillus, Clostridium, and Enterococcus. Over half of the isolates exhibited significant oxalate degradation in vitro, and all Lactobacillus isolates contained the oxc gene, one of the genes responsible for oxalate degradation. Although diverse potential oxalate-degrading genera were distributed throughout the gastrointestinal tract, they were most concentrated in the foregut, where dietary oxalate first enters the gastrointestinal tract. We hypothesize that unique environmental conditions present in each gut region provide diverse niches that select for particular functional taxa and communities.  相似文献   

9.
Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts’ fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity.  相似文献   

10.
It has been suggested that lactic acid-producing bacteria may protect the epithelium of the mammalian gastrointestinal tract from pathogenic micro-organisms. Consistent with this, bacteria isolated from the mucosa of the small intestine of five lichenfed, semi-domesticated reindeer included mainly Streptococcus spp. However, the population densities of bacteria associated with the mucosa and in the intestinal contents were generally low and there was a large amount of variation both between animals and with site of sampling. It therefore seems unlikely that Streptococcus spp. are essential for the function of the small intestine in captive reindeer, and their role here remains uncertain.  相似文献   

11.
乳酸菌是机体内一类重要的益生菌,因其益生功能和安全性,在食品行业和医疗保健领域有着广泛的应用,此外将乳酸菌作为口服疫苗载体或药物传递载体也是目前的研究热点之一。乳酸菌到达肠道的活菌数是影响其功能有效性的一个重要因素,需考虑为其提供一定的防护来抵御胃酸等恶劣环境。通过化学法制备能稳定表达Gfp的乳酸乳球菌海藻酸钙微囊,以Gfp作为活菌标记,检测了海藻酸钙微囊对乳酸乳球菌的保护作用。体外实验结果显示,酸处理30、60、90、120 min后,海藻酸钙微囊包裹使乳酸乳球菌的存活率分别提高了1 370、525、235和105倍。动物体内实验也表明,在灌胃2 h后,海藻酸钙微囊包裹使乳酸乳球菌在肠道内的活菌数增加90多倍。上述结果说明海藻酸钙微囊对乳酸乳球菌在胃肠道环境中具有明显的保护作用,为今后乳酸乳球菌口服制剂的研究及开发提供重要的参考依据。  相似文献   

12.
The human gastrointestinal tract hosts a complex community of microorganisms that grow as biofilms on the intestinal mucosa. These bacterial communities are not well characterized, although they are known to play an important role in human health. This study aimed to develop a model for culturing biofilms (surface-adherent communities) of intestinal microbiota. The model utilizes adherent mucosal bacteria recovered from colonic biopsies to create multi-species biofilms. Culture on selective media and confocal microscopy indicated the biofilms were composed of a diverse community of bacteria. Molecular analyses confirmed that several phyla were represented in the model, and demonstrated stability of the community over 96 h when cultured in the device. This model is novel in its use of a multi-species community of mucosal bacteria grown in a biofilm mode of growth.  相似文献   

13.
The human gastrointestinal tract (GIT) is a well-recognized hub of microbial activities. The microbiota harboring the mucus layer of the GIT act as a defense against noxious substances, and pathogens including Clostridium difficile, Enterococcus faecium, Escherichia coli, Salmonella Typhimurium. Toxins, pathogens, and antibiotics perturb the commensal floral composition within the GIT. Imbalanced gut microbiota leads to dysbiosis, manifested as diseases ranging from obesity, diabetes, and cancer to reduced lifespan. Among the bacteria present in the gut microbiome, the most beneficial are those representing Firmicutes and Bacteroidetes. Recent studies have revealed the emergence of a novel biotherapeutic agent, Akkermansia, which is instrumental in regaining eubiosis and conferring various health benefits.  相似文献   

14.
A new concept for viral oncogenesis is presented which is based on experimental work on the chromosomal integration of adenovirus DNA into mammalian genomes. The mechanism of adenovirus DNA integration is akin to non-sequence-specific insertional recombination in which patch homologies between the recombination partners are frequently observed. This reaction has been imitated in a cell-free system by using nuclear extracts from hamster cells and partly purified fractions derived from them. As a consequence of foreign DNA insertion into the mammalian genome, the foreign DNA is extensively de novo methylated in specific patterns, presumably as part of a mammalian host cell defense mechanism against inserted foreign DNA which can be permanently silenced in this way. A further corollary of foreign (adenovirus or bacteriophage λ) DNA integration is seen in extensive changes in cellular DNA methylation patterns at sites far remote from the locus of insertional recombination. Repetitive cellular, retrotransposon-like sequences are particularly, but not exclusively, prone to these increases in DNA methylation. It is conceivable that these changes in DNA methylation are a reflection of a profound overall reorganization process in the affected genomes. Could these alterations significantly contribute to the transformation events during viral or other types of oncogenesis? These sequelae of foreign DNA integration into established mammalian genomes will have to be critically considered when interpreting results obtained with transgenic, knock-out, and knock-in animals and when devising schemes for human somatic gene therapy.The interpretation of de novo methylation as a cellular defense mechanism has prompted investigations on the fate of food-ingested foreign DNA. The gastrointestinal (GI) tract provides a large surface for the entry of foreign DNA into any organism. As a tracer molecule, bacteriophage M13 DNA has been fed to mice. Fragments of this DNA can be found in small amounts (about 1 % of the administered DNA) in all parts of the intestinal tract and in the feces. Furthermore, M13 DNA can be traced in the columnar epithelia of the intestine, in Peyer's plaque leukocytes, in peripheral white blood cells, in spleen, and liver. Authentic M13 DNA has been recloned from total spleen DNA. If integrated, this DNA might elicit some of the described consequences of foreign DNA insertion into the mammalian genome. Food-ingested DNA will likely infiltrate the organism more frequently than viral DNA.  相似文献   

15.
Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose–amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.  相似文献   

16.
Lactic acid bacteria (LAB) are found to occupy a variety of ecological niches including fermented foods as well as mucosal surfaces of humans and other vertebrates. This review is based on the genomic content of LAB that is responsible for the functional and ecological diversity of these bacteria. These genomes reveal an ongoing process of reductive evolution as the LAB have specialized to different nutritionally rich environments. Species-to-species variation in the number of pseudogenes as well as genes directing nutrient uptake and metabolism reflects the adaptation of LAB to food matrices and the gastrointestinal tract. Although a general trend of genome reduction was observed, certain niche-specific genes appear to be recently acquired and appear on plasmids or adjacent to prophages. Recent work has improved our understanding of the genomic content responsible for various phenotypes that continue to be discovered, as well as those that have been exploited by man for thousands of years.  相似文献   

17.
Bifidobacteria are well known for their human health-promoting effects and are therefore widely applied in the food industry. Members of the Bifidobacterium genus were first identified from the human gastrointestinal tract and were then found to be widely distributed across various ecological niches. Although the genetic diversity of Bifidobacterium has been determined based on several marker genes or a few genomes, the global diversity and evolution scenario for the entire genus remain unresolved. The present study comparatively analyzed the genomes of 45 type strains. We built a robust genealogy for Bifidobacterium based on 402 core genes and defined its root according to the phylogeny of the tree of bacteria. Our results support that all human isolates are of younger lineages, and although species isolated from bees dominate the more ancient lineages, the bee was not necessarily the original host for bifidobacteria. Moreover, the species isolated from different hosts are enriched with specific gene sets, suggesting host-specific adaptation. Notably, bee-specific genes are strongly associated with respiratory metabolism and are potential in helping those bacteria adapt to the oxygen-rich gut environment in bees. This study provides a snapshot of the genetic diversity and evolution of Bifidobacterium, paving the way for future studies on the taxonomy and functional genomics of the genus.  相似文献   

18.
The 'biodrug' concept: an innovative approach to therapy   总被引:1,自引:0,他引:1  
Cell engineering technology using recombinant microorganisms has created new opportunities in the development of innovative drugs. This article presents the use of living genetically engineered microorganisms, such as bacteria or yeasts, as a new delivery vehicle to the gastrointestinal tract. This 'biodrug' concept was demonstrated using recombinant Saccharomyces cerevisiae expressing the plant cytochrome P450 73A1. This enzyme provides a relevant model for potential therapeutic applications, such as 'biodetoxication' in the digestive environment. An artificial gastrointestinal tract simulating human digestion was chosen as a powerful tool to validate the biodrug concept. This approach offers a novel strategy for drug discovery and testing.  相似文献   

19.
The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs’ health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets’ growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets’ growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.  相似文献   

20.
Before a probiotic bacterium can even begin to fulfill its biological role, it must survive a battery of environmental stresses imposed during food processing and passage through the gastrointestinal tract (GIT). Food processing stresses include extremes in temperature, as well as osmotic, oxidative and food matrix stresses. Passage through the GIT is a hazardous journey for any bacteria with deleterious lows in pH encountered in the stomach to the detergent-like properties of bile in the duodenum. However, bacteria are equipped with an array of defense mechanisms to counteract intracellular damage or to enhance the robustness of the cell to withstand lethal external environments. Understanding these mechanisms in probiotic bacteria and indeed other bacterial groups has resulted in the development of a molecular toolbox to augment the technological and gastrointestinal performance of probiotics. This has been greatly aided by studies which examine the global cellular responses to stress highlighting distinct regulatory networks and which also identify novel mechanisms used by cells to cope with hazardous environments. This review highlights the latest studies which have exploited the bacterial stress response with a view to producing next-generation probiotic cultures and highlights the significance of studies which view the global bacterial stress response from an integrative systems biology perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号