首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a variety of disease settings the expression of the endothelial selectins E- and P-selectin appears to be increased. This feature makes these molecules attractive targets around which to design directed drug-delivery schemes. One possible approach for achieving such delivery is to use polymeric biodegradable microspheres bearing a humanized monoclonal antibody (MAb) for E- and P-selectin, MAb HuEP5C7.g2. Perhaps the simplest technique for "coupling" HuEP5C7.g2 to the microspheres is via nonspecific adsorption. Previous studies suggest, however, that the adsorption of proteins onto microspheres fabricated in the presence of a stabilizer such as poly(vinyl alcohol) (PVA) is limited. It is unclear to what extent this limited level of adsorbed HuEP5C7.g2 would be able to support adhesion to E- and P-selectin under flow conditions. To explore this issue, we prepared microspheres from the biodegradable polymer, poly(epsilon-caprolactone) (PCL), using a single emulsion process and PVA as a stabilizer. We then incubated the PCL microspheres with HuEP5C7.g2 and studied the adhesion of the resulting HuEP5C7.g2 microspheres to E- and P-selectin under in vitro flow conditions. We found that the HuEP5C7.g2 PCL microspheres exhibit specific adhesion to Chinese hamster ovary cells stably expressing P-selectin (CHO-P) and 4-h IL-1beta-activated human umbilical vein endothelial cells (HUVEC). In contrast, HuEP5C7.g2 PCL microspheres exhibit little adhesion to parental CHO cells or unactivated HUVEC. The attachment efficiency to the selectin substrates was quite low, with appreciable attachment occurring only at low shear (0.3 dyn/cm(2)). Other supporting data strongly suggest that the limited attachment efficiency is due to a low level of HuEP5C7.g2 adsorbed to the PCL microspheres. Although the attachment was limited, a significant percentage of the HuEP5C7.g2 PCL microspheres were able to remain adherent at relatively high shear (8 dyn/cm(2)). Combined, our data suggest that HuEP5C7.g2 PCL microspheres exhibit selective limited adhesion to cellular substrate expressing E- and P-selectin.  相似文献   

2.
Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.  相似文献   

3.
P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play important roles in mediating the inflammatory cascade. Selectin kinetics, together with neutrophil hydrodynamics, regulate the fundamental adhesion cascade of cell tethering and rolling on the endothelium. The current study uses the Multiscale Adhesive Dynamics computational model to simulate, for the first time, the tethering and rolling behavior of pseudopod-containing neutrophils as mediated by P-selectin/PSGL-1 bonds. This paper looks at the effect of including P-selectin/PSGL-1 adhesion kinetics. The parameters examined included the shear rate, adhesion on-rate, initial neutrophil position, and receptor number sensitivity. The outcomes analyzed included types of adhesive behavior observed, tether rolling distance and time, number of bonds formed during an adhesive event, contact area, and contact time. In contrast to the hydrodynamic model, P-selectin/PSGL-1 binding slows the neutrophil’s translation in the direction of flow and causes the neutrophil to swing around perpendicular to flow. Several behaviors were observed during the simulations, including tethering without firm adhesion, tethering with downstream firm adhesion, and firm adhesion upon first contact with the endothelium. These behaviors were qualitatively consistent with in vivo data of murine neutrophils with pseudopods. In the simulations, increasing shear rate, receptor count, and bond formation rate increased the incidence of firm adhesion upon first contact with the endothelium. Tethering was conserved across a range of physiological shear rates and was resistant to fluctuations in the number of surface PSGL-1 molecules. In simulations where bonding occurred, interaction with the side of the pseudopod, rather than the tip, afforded more surface area and greater contact time with the endothelial wall.  相似文献   

4.
Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin-binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-beta-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin-ligand interactions.  相似文献   

5.
Selectin-mediated cell adhesion is an essential component of the inflammatory response. In an attempt to unambiguously identify molecular features of ligands that are necessary to support rolling adhesion on P-selectin, we have used a reconstituted ("cell-free") system in which ligand-coated beads are perfused over soluble P-selectin surfaces. We find that beads coated with the saccharides sialyl Lewis(x) (sLe(x)), sialyl Lewis(a) (sLe(a)), and sulfated Lewis(x) (HSO(3)Le(x) support rolling adhesion on P-selectin surfaces. Although it has been suggested that glycosylation and sulfation of P-selectin glycoprotein ligand-1 (PSGL-1) is required for high-affinity binding and rolling on P-selectin, our findings indicate that sulfation of N-terminal tyrosine residues is not required for binding or rolling. However, beads coated with a tyrosine-sulfated, sLe(x)-modified, PSGL-1-Fc chimera support slower rolling on P-selectin than beads coated with sLe(x) alone, suggesting that sulfation improves rolling adhesion by modulating binding to P-selectin. In addition, we find it is not necessary that P-selectin carbohydrate ligands be multivalent for robust rolling to occur. Our results demonstrate that beads coated with monovalent sLe(x), exhibiting a more sparse distribution of carbohydrate than a similar amount of the multivalent form, are sufficient to yield rolling adhesion. The relative abilities of various ligands to support rolling on P-selectin are quantitatively examined among themselves and in comparison to human neutrophils. Using stop-time distributions, rolling dynamics at video frame rate resolution, and the average and variance of the rolling velocity, we find that P-selectin ligands display the following quantitative trend, in order of decreasing ability to support rolling adhesion on P-selectin: PSGL-1-Fc > sLe(a) approximately sLe(x) > HSO(3)Le(x).  相似文献   

6.
Employing a new procedure, we established many monoclonal antibodies (mAbs) which inhibit E- or P-selectin-dependent cell adhesion. One of these mAbs is capable of staining selectin in paraffin-embedded histological sections. The procedure is based on immunization of BALB/c mice with irradiated mouse myeloma NS-1 cells (syngeneic HAT-sensitive fusion partner cells) transfected with cDNA encoding human E- or P-selectin. Resulting NS-1 transfectant cells permanently express human E- or P-selectin as immunogen. The mAbs are useful for detecting selectins by flow cytometric and immunohistological methods, and for inhibiting selectin-dependent adhesion in experimental models. In contrast, the majority of anti-selectin mAbs previously established do not have these capabilities. Abbreviations: Ig, immunoglobulin; mAb, monoclonal antibody  相似文献   

7.
In postcapillary venules, marginating neutrophils (PMNs) are often seen rolling along the vessel wall prior to stopping and emigrating. There is substantial evidence in vitro and in vivo that the adhesion receptors E- and L-selectin participate in this phenomenon on cytokine-stimulated endothelium, and recent evidence has shown that a closely related adhesion receptor, P-selectin, is capable of mediating neutrophil rolling on an artificial membrane. Here we demonstrate and characterize PMN rolling on monolayers of human umbilical vein endothelial cells (HUVECs) stimulated with histamine to induce surface expression of P-selectin. Peak association of PMNs with the HUVECs occurs 10 min after histamine stimulation, and at a postcapillary venular wall shear stress of 2.0 dyn/cm2 the rolling velocity is 14 microns/s. Approximately 95% of the PMNs roll on the endothelial cells, 5% adhere firmly, and none migrate beneath the endothelial monolayer. Monoclonal antibody (MAb) G1, which binds P-selectin and blocks its adhesive function, completely prevents association of the PMNs with histamine-stimulated HUVEC, whereas the nonblocking anti-P-selectin MAb S12 does not. Treatment of PMNs with the anti-L-selectin MAb DREG56 reduces PMN adherence by approximately 50%. Anti-CD54 MAb R6.5 and anti-CD18 MAb R15.7 have little effect on the number of PMNs rolling on the HUVECs but completely prevent PMNs from stopping and significantly increase rolling velocity. Nonblocking control MAbs for R6.5 (CL203) and R15.7 (CL18/1D1) lack these effects. Rolling adhesion of PMNs on histamine-stimulated HUVECs therefore appears to be completely dependent on endothelial cell P-selectin, with a minor adhesion-stabilizing contribution from intercellular adhesion molecule 1 and beta 2 integrins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Activated T cells migrate from the blood into nonlymphoid tissues through a multistep process that involves cell rolling, arrest, and transmigration. P-Selectin glycoprotein ligand-1 (PSGL-1) is a major ligand for P-selectin expressed on subsets of activated T cells such as Th1 cells and mediates cell rolling on vascular endothelium. Rolling cells are arrested through a firm adhesion step mediated by integrins. Although chemokines presented on the endothelium trigger integrin activation, a second mechanism has been proposed where signaling via rolling receptors directly activates integrins. In this study, we show that Ab-mediated cross-linking of the PSGL-1 on Th1 cells enhances LFA-1-dependent cell binding to ICAM-1. PSGL-1 cross-linking did not enhance soluble ICAM-1 binding but induced clustering of LFA-1 on the cell surface, suggesting that an increase in LFA-1 avidity may account for the enhanced binding to ICAM-1. Combined stimulation by PSGL-1 cross-linking and the Th1-stimulating chemokine CXCL10 or CCL5 showed a more than additive effect on LFA-1-mediated Th1 cell adhesion as well as on LFA-1 redistribution on the cell surface. Moreover, PSGL-1-mediated rolling on P-selectin enhanced the Th1 cell accumulation on ICAM-1 under flow conditions. PSGL-1 cross-linking induced activation of protein kinase C isoforms, and the increased Th1 cell adhesion observed under flow and also static conditions was strongly inhibited by calphostin C, implicating protein kinase C in the intracellular signaling in PSGL-1-mediated LFA-1 activation. These results support the idea that PSGL-1-mediated rolling interactions induce intracellular signals leading to integrin activation, facilitating Th1 cell arrest and subsequent migration into target tissues.  相似文献   

9.
P-selectin glycoprotein ligand-1 and β1 integrin play essential roles in T cell trafficking during inflammation. E-selectin and vascular cell adhesion molecule-1 are their ligands expressed on inflammation-activated endothelium. During the tethering and rolling of lymphocytes on endothelium, P-selectin glycoprotein ligand-1 binds E-selectin and induces signals. Subsequently, β1 integrin is activated and mediates stable adhesion. However, the intracellular signal pathways from PSGL-1 to β1 integrin have not yet been fully understood. Here, we find that p85, a regulatory subunit of phosphoinositide 3-kinase, forms a novel complex with Rho-GDP dissociation inhibitor-2, a lymphocyte-specific RhoGTPases dissociation inhibitor. Phosporylations of the p85-bound Rho-GDP dissociation inhibitor-2 on 130 and 153 tyrosine residues by c-Abl and Src were required for the complex to be recruited to P-selectin glycoprotein ligand-1 and thereby regulate β1 integrin-mediated T cell adhesion to vascular cell adhesion molecule-1. Both shRNAs to Rho-GDP dissociation inhibitor-2 and p85 and over-expression of Rho-GDP dissociation inhibitor-2 Y130F and Y153F significantly reduced the above-mentioned adhesion. Although Rho-GDP dissociation inhibitor-2 in the p85-Rho-GDP dissociation inhibitor-2 complex was also phosphorylated on 24 tyrosine residue by Syk, the phosphorylation is not required for the adhesion. Taken together, we find that specific phosphorylations on 130 and 153 tyrosine residues of p85-bound Rho-GDP dissociation inhibitor-2 are pivotal for P-selectin glycoprotein ligand-1-induced β1 integrin-mediated lymphocyte adhesion to vascular cell adhesion molecule-1. This will shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.  相似文献   

10.
CD43 functions as a ligand for E-Selectin on activated T cells   总被引:4,自引:0,他引:4  
E-selectin, an inducible cell adhesion molecule expressed on endothelial cells, mediates the rolling on endothelium of leukocytes expressing E-selectin ligands, such as neutrophils and activated T cells. Although previous studies using mice lacking P-selectin glycoprotein ligand-1 (PSGL-1) have indicated that PSGL-1 on Th1 cells functions as an E-selectin ligand, the molecular nature of E-selectin ligands other than PSGL-1 remains unknown. In this study, we show that a 130-kDa glycoprotein was precipitated by an E-selectin-IgG chimera from mouse Th1 cells. This protein was cleaved by O-sialoglycoprotein endopeptidase and required sialic acid for E-selectin binding. The mAb 1B11, which recognizes the 130-kDa glycoform of CD43, recognized the 130-kDa band in the E-selectin-IgG precipitate. In addition, immunoprecipitation of the E-selectin-IgG precipitate with 1B11 depleted the 130-kDa protein, further confirming its identity as CD43. CD43 was also precipitated with E-selectin-IgG from cultured human T cells. E-selectin-dependent cell rolling on CD43 was observed under flow conditions using a CD43-IgG chimera generated in Chinese hamster ovary cells expressing alpha-1,3-fucosyltransferase VII and a core 2 beta-1,6-N-acetylglucosaminyltransferase. These results suggest that CD43, when modified by a specific set of glycosyltranferases, can function as an E-selectin ligand and therefore potentially mediate activated T cell migration into inflamed sites.  相似文献   

11.
Leukocyte capture and rolling on the vascular endothelium is mediated principally by the selectin family of cell adhesion receptors. In a parallel plate flow chamber, neutrophil rolling on purified selectins or a selectin-ligand substrate was resolved by high speed videomicroscopy as a series of ratchet-like steps with a characteristic time constant (Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A.-M. Benoliel, M. C. Alessi, S. Kaplanski, and P. Bongrand. 1993. Biophys. J. 64:1922-1933; Alon, R., D. A. Hammer, and T. A. Springer. 1995. Nature (Lond.). 374:539-542). Under shear, neutrophil arrests due to bond formation events were as brief as 4 ms. Pause time distributions for neutrophils tethering on P-, E-, L-selectin, or peripheral node addressin (PNAd) were compared at estimated single bond forces ranging from 37 to 250 pN. Distributions of selectin mediated pause times were fit to a first order exponential, resulting in a molecular dissociation constant (k(off)) for the respective selectin as a function of force. At estimated single bond forces of 125 pN and below, all three selectin dissociation constants fit the Bell and Hookean spring models of force-driven bond breakage equivalently. Unstressed k(off) values based on the Bell model were 2.4, 2.6, 2.8, 3.8 s(-1) for P-selectin, E-selectin, L-selectin, and PNAd, respectively. Bond separation distances (reactive compliance) were 0.39, 0.18, 1.11, 0.59 A for P-selectin, E-selectin, L-selectin, and PNAd, respectively. Dissociation constants for L-selectin and P-selectin at single bond forces above 125 pN were considerably lower than either Bell or Hookean spring model predictions, suggesting the existence of two regimes of reactive compliance. Additionally, interactions between L-selectin and its leukocyte ligand(s) were more labile in the presence of flow than the L-selectin endothelial ligand, PNAd, suggesting that L-selectin ligands may have different molecular and mechanical properties. Both types of L-selectin bonds had a higher reactive compliance than P-selectin or E-selectin bonds.  相似文献   

12.
本实验采用中文吖啶橙荧光标记技术,结合微循环观察用显微超高速摄录像装置,观察了内毒素对微血管内白细胞与微静脉血管内皮细胞的粘附性的影响。结果表明,内毒素对大鼠的血压、微血管口径和微动脉血流速度影响不大,微静脉血流速度在滴注内毒素后45和60min下降了16.67%和17.95%(P<0.05);但内毒素能迅速改变微静脉内的白细胞流态,明显增加附壁滚动的白细胞数和粘附白细胞密度指数,经测量同一微静脉内的白细胞和红细胞流速,求得白细胞与微静脉内皮细胞之间的破裂力在5min和15min时下降了25.96%和42.88%(P<0.01),下降趋势持续整个实验过程;说明内毒素能明显地增加白细胞与微静脉血管内皮细胞之间的粘附力。由此提示,研究白细胞与微静脉血管内皮细胞之间粘附力增强机制及寻找其抑制因素对改善微循环紊乱、抢救休克具有重要的临床意义。  相似文献   

13.
Cell rolling on vascular endothelium under hydrodynamic blood flow is critical for realization of many physiological and pathological processes, such as inflammatory response and tumor metastasis. The blood-borne cells are in direct contact with the inner layer of endothelium, formed by a highly compliant layer of endothelial cells. The effect of endothelial stiffness on the adhesion and motion of rolling cells is poorly understood. Inspired by recent in vitro studies, here we implemented a computational method to model the specific adhesion of a rolling cell onto a soft substrate, subjected to a creeping shear flow. The substrate is modeled as an elastic half-space, coated with P- and E-selectin receptors with specific affinity for the complementary ligands located on the moving cell. Of particular importance is to predict the effect of substrate stiffness on cell adhesion and its kinematics and kinetics of motion. Simulation results show that the effect of substrate compliance is minimal when coated with P-selectin. Conversely, the trajectory of rolling cells on E-selectin coated substrates is sensitive to the substrate compliance. This is attributed to the moderation of binding forces applied by the soft substrate which leads to a higher average translational velocity of cells.  相似文献   

14.
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl Lewis(X) (sLe(X)), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLe(X)/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLe(X)/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLe(X)/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLe(X) mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLe(X)/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for beta(2)-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology.  相似文献   

15.
Memory T cells in inflamed skin express the cutaneous lymphocyte-associated antigen (CLA), a glycosylated epitope defined by the mAb HECA-452. We previously reported that on T cells, CLA occurs almost exclusively on the protein backbone of P-selectin glycoprotein ligand-1 (PSGL-1). T cells exhibiting the CLA isoform of PSGL-1 can tether and roll on both E- and P-selectin, while T cells expressing PSGL-1 without the CLA epitope do not bind E-selectin, though they may bind P-selectin. We show here that circulating neutrophils and monocytes, and cultured blood dendritic cells, also express CLA almost entirely as an isoform of PSGL-1. These cells all tether and roll on both E- and P-selectin. A chimeric fusion protein incorporating the 19 N-terminal amino acids of mature PSGL-1 exhibited HECA-452 immunoreactivity and supported rolling of CHO cells expressing either E- or P-selectin. These findings indicate a site for the CLA modification within the distal tip of PSGL-1, previously shown to be critical for P-selectin binding and to mediate some, but not all, of the E-selectin binding of PSGL-1. We hypothesize that the types of circulating leukocytes discussed above all use CLA/PSGL-1 to tether and roll on E- and P-selectin along the vascular endothelium.  相似文献   

16.
The selectins are adhesion molecules that mediate the tethering and rolling of leukocytes on vascular endothelium. Although E-selectin and P-selectin are known to be expressed by endothelial cells (EC) in response to proinflammatory stimuli, their pattern and mechanisms of expression in immune-mediated inflammation remain poorly understood. By quantifying luminal endothelial selectin expression via i.v. administration of radiolabeled mAb, we detected constitutive expression of P-selectin, but not E-selectin, in mouse skin. Both selectins were transiently up-regulated after intradermal TNF-alpha, IL-1alpha, or IL-1beta. In contrast, during a contact sensitivity response to oxazolone, expression of both selectins was prolonged, with distinct peaks at 6 and 48 h. Experiments with P-selectin gene-targeted mice showed that the P-selectin measured was exclusively expressed by EC rather than platelets. The early and late phases of selectin expression in contact sensitivity were differentiated in terms of their requirement for prior sensitization, and the action of IL-1. Whereas the early phase was a nonspecific 'irritant' response to oxazolone, the late phase was Ag specific and was partially IL-1 dependent. Therefore, persistence of both E- and P-selectin expression in vivo can occur as a result of sequential and distinct EC activation processes that appear to be at least partially different from those previously reported as stimulating ICAM-1 and VCAM-1 expression. The further elucidation of mechanisms of EC activation in this model may help determine the relative roles of selectins and ligands for leukocyte integrins in the sequential recruitment of T cells and other leukocyte subsets during ongoing immune-mediated inflammatory responses.  相似文献   

17.
Flow-enhanced cell adhesion is a counterintuitive phenomenon that has been observed in several biological systems. Flow augments L-selectin-dependent adhesion by increasing the initial tethering of leukocytes to vascular surfaces and by strengthening their subsequent rolling interactions. Tethering or rolling might be influenced by physical factors that affect the formation or dissociation of selectin-ligand bonds. We recently demonstrated that flow enhanced rolling of L-selectin-bearing microspheres or neutrophils on P-selectin glycoprotein ligand-1 by force decreased bond dissociation. Here, we show that flow augmented tethering of these microspheres or cells to P-selectin glycoprotein ligand-1 by three transport mechanisms that increased bond formation: sliding of the sphere bottom on the surface, Brownian motion, and molecular diffusion. These results elucidate the mechanisms for flow-enhanced tethering through L-selectin.  相似文献   

18.
P-selectin glycoprotein ligand-1 (PSGL-1) is a large (240 kDa) glycoprotein found on the surface of nearly all leukocytes. The mature molecule is decorated with multiple N- and O-linked glycans and displays copies of the tetrasaccharide sialyl-Lewis(x) (sLe(X)), as well as a cluster of three tyrosine sulfate (tyr-SO(3)) groups near the N-terminus of the processed protein. Previous studies have suggested that PSGL-1 needs to be tyrosine-sulfated, in addition to glycosylated with sLe(X), to successfully interact with P-selectin. To better understand how biochemical features of the PSGL-1 ligand are related to its adhesion phenotype, we have measured the dynamics of adhesion under flow of a series of well-defined PSGL-1 variants that differ in their biochemical modification, to both P- and E-selectin-coated substrates. These variants are distinct PSGL-1 peptides: one that possesses sLe(X) in conjunction with three N-terminal tyr-SO(3) groups (SGP3), one that possesses sLe(X) without tyrosine sulfation (GP1), and one that lacks sLe(X) but has three N-terminal tyr-SO(3) groups (SP3). Although all peptides expressing sLe(X), tyr-SO(3), or both supported some form of rolling adhesion on P-selectin, only peptides expressing sLe(X) groups showed rolling adhesion on E-selectin. On P-selectin, the PSGL-1 peptides demonstrated a decreasing strength of adhesion in the following order: SGP3 > GP1 > SP3. Robust, rolling adhesion on P-selectin was mediated by the GP1 peptide, despite its lack of tyrosine sulfation. However, the addition of tyrosine sulfation to glycosylated peptides (SGP3) creates a super ligand for P-selectin that supports slower rolling adhesion at all shear rates and supports rolling adhesion at much higher shear rates. Tyrosine sulfation has no similar effect on PSGL-1 rolling on E-selectin. Such functional distinctions in rolling dynamics are uniquely realized with a cell-free system, which permits precise, unambiguous identification of the functional activity of adhesive ligands. These findings are consistent with structural and functional characterizations of the interactions between these peptides and E- and P-selectin published recently.  相似文献   

19.
P-selectin (CD62P) is a cell adhesion molecule expressed on stimulated endothelial cells and on activated platelets. It interacts with PSGL-1 (P-selectin glycoprotein ligand-1; CD162) on leukocytes and mediates recruitment of leukocytes during inflammation. P-selectin also binds to several types of cancer cells in vitro and facilitates growth and metastasis of colon carcinoma in vivo. Here we show that P-selectin, but not E-selectin, binds to NCI-H345 cells, a cell line derived from a human small cell lung cancer. EDTA or P7 (a leukocyte adhesion blocking mAb to P-selectin), but not PL5 (a leukocyte adhesion blocking mAb to PSGL-1), can inhibit this binding. P-selectin affinity chromatography can precipitate a approximately 110-kDa major band and a approximately 220-kDa minor band from [3H]-glucosamine-labeled NCI-H345 cells. No expression of PSGL-1 protein and mRNA can be detected in NCI-H345 cells. Taken together, these results suggest that NCI-H345 cells express glycoprotein ligands for P-selectin that are distinct from leukocyte PSGL-1.  相似文献   

20.
The interactions of the selectin family of adhesion molecules with their ligands are essential for the initial rolling stage of leukocyte trafficking. Under inflammatory conditions, the vascular selectins, E- and P-selectin, are expressed on activated vessels and interact with carbohydrate-based ligands on the leukocyte surface. While several ligands have been characterized on human T cells, monocytes and neutrophils, there is limited information concerning ligands on B cells. Endoglycan (EG) together with CD34 and podocalyxin comprise the CD34 family of sialomucins. We found that EG, previously implicated as an L-selectin ligand on endothelial cells, was present on human B cells, T cells and peripheral blood monocytes. Upon activation of B cells, EG increased with a concurrent decrease in PSGL-1. Expression of EG on T cells remained constant under the same conditions. We further found that native EG from several sources (a B cell line, a monocyte line and human tonsils) was reactive with HECA-452, a mAb that recognizes sialyl Lewis X and related structures. Moreover, immunopurified EG from these sources was able to bind to P-selectin and where tested E-selectin. This interaction was divalent cation-dependent and required sialylation of EG. Finally, an EG construct supported slow rolling of E- and P-selectin bearing cells in a sialic acid and fucose dependent manner, and the introduction of intact EG into a B cell line facilitated rolling interactions on a P-selectin substratum. These in vitro findings indicate that EG can function as a ligand for the vascular selectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号