首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used 13 microsatellite marker loci to determine the genetic diversity of cassava (Manihot esculenta Crantz) grown in home gardens in two Chibchan Amerindian reserves in Costa Rica. We compared the levels of genetic diversity in the reserves with that of commercial varieties typically cultivated in Costa Rica. We found high levels of genetic diversity among cassava plants. Overall, 12 of the 13 loci examined were polymorphic in each Amerindian reserve (P = 92.3). Moreover, we found 36 alleles in the Coto Brus Reserve and 33 in the Talamanca Reserve. In the commercial varieties only nine loci were polymorphic (P = 69.2), and we only found 23 alleles. Heterozygosity was high for all groups of cassava (Coto Brus, Talamanca, and commercial varieties), but it was higher among the commercial varieties. The levels of heterozygosity and allele diversity indicate that there is significant genetic diversity in the home gardens that we examined. Another indication of the high diversity found in these gardens is the number of distinct multilocus genotypes, 28 at Coto Brus and 19 at Talamanca. There was also more than one distinct multilocus genotype found within the commercial varieties, as three were found in Valencia and four in Manyi. Our data also revealed low levels of genetic differentiation between the three groups of cassava (Fst = 0.03), and Nei’s genetic distances ranged from 0.0167 to 0.0343. In addition, F estimates (Fis and Fit) indicate excess heterozygotes, both at the subpopulation and the population level. A hierarchical analysis of the genetic variation revealed that variation between sampling locations within each of the three groups of cassava was larger than that between groups (Theta S = 0.0775 and Theta P = 0.0204, respectively). The variety Manyi was the group genetically most distant from all others. We discuss the consequences of these findings for in situ conservation of genetic resources.  相似文献   

2.
To determine the relationships and genetic diversity among the Mexican races of maize, 209 accessions representing 59 races were analyzed for 21 enzyme systems encoded by 37 loci; 154 out of the 209 accessions were grown in multiple locations and seasons in Mexico and 47 morphological characters were measured. A very high level of variation among and within the Mexican races was found. However, more than 65% of the alleles found in the accessions studied are rare, occurring at frequencies below 0.01. In addition, some populations have low levels of genetic diversity and have values of genetic differentiation similar to selflng crops. Most of the accessions with low values of genetic diversity are specialty varieties.  相似文献   

3.
Plant species in fragmented populations are affected by landscape structure because persistence within and migration among inhabited patches may be influenced by the identity and configuration of surrounding habitat elements. This may also be true for species of the semi-natural vegetation in agricultural landscapes. To determine the effect of landscape elements we analyzed Wood Avens (Geum urbanum L.) populations within three 4×4 km2 agricultural landscapes in Germany, Switzerland and Estonia, which differ in levels of land use intensity and habitat fragmentation. Genetic variation was determined in 15 randomly selected populations in each landscape using 10 microsatellite loci. The landscape structure was assessed at two circles around each population, with radii defined by the range limits of spatial genetic autocorrelation. Multiple regression analysis was used to determine the influence of landscape structure variables for inter- and intrapopulation genetic diversity. Gene diversity was equally high in Germany (He=0.27) and Switzerland (He=0.26) but lower in Estonia (He=0.16). A high overall inbreeding coefficient (FIS=0.89) was found, as expected for a selfing breeding system in G. urbanum. Genetic differentiation among populations was high (overall FST=0.43, 0.48, and 0.45 in Estonia, Switzerland and Germany, respectively), and did not differ among the three landscapes. Only a moderate influence of individual land use types on genetic diversity within and among populations was found with some idiosyncratic relationships. Genetic variation within populations was correlated to the amount of hedgerows positively in Estonia but negatively in Switzerland. The study demonstrates that the distribution of individual land use types affects the genetic pattern of a common plant species. However, different variables were identified to influence the genetic structure in three different landscapes. This indicates a major influence of landscape-specific land use history and stochastic processes determining gene flow and plant population structure.  相似文献   

4.
1. Sexual populations are expected to perform better in fluctuating environments than asexuals because recombination provides the potential to adapt to changing environments due to increased genetic variation. Nevertheless, some asexual species show comparably high levels of genotypic diversity. Such diversity might be achieved through gene flow between coexisting sexual and asexual populations or through sexual events within asexual populations. 2. Evidence for occasional sex in the flatworm Schmidtea polychroa was previously found at one specific site that is inhabited by parthenogenetic forms. There, varying rates of sex between subpopulations, reaching up to 12%, were observed. Past recurrent sexual processes left a significant genetic signature in the population genetic structure of this population. In the present study, we examined the population genetic structure of six independent metapopulations (lakes) of the freshwater planarian flatworm S. polychroa, to confirm the presence of occasional sex and that its population genetic consequences can be generalised. 3. Using microsatellites, we found varying rates of occasional sex among subpopulations. Metapopulations showed medium to high levels of genotypic diversity that correlated with the rate of sex. 4. We conclude that occasional sex has considerable consequences for population genetic structure of parthenogenetic species and promotes diversity that might allow response to the particular type of selection that is usually predicted to favour sexual reproduction. This reproductive strategy provides genetic characteristics required for selection to act on, and might, therefore, explain the success of this parthenogenetic species.  相似文献   

5.
Molecular‐marker‐aided evaluation of germplasm plays an important role in defining the genetic diversity of plant genotypes for genetic and population improvement studies. A collection of African cassava landraces and elite cultivars was analysed for genetic diversity using 20 amplified fragment length polymorphic (AFLP) DNA primer combinations and 50 simple sequence repeat (SSR) markers. Within‐population diversity estimates obtained with both markers were correlated, showing little variation in their fixation index. The amount of within‐population variation was higher for landraces as illustrated by both markers, allowing discrimination among accessions along their geographical origins, with some overlap indicating the pattern of germplasm movement between countries. Elite cultivars were grouped in most cases in agreement with their pedigree and showed a narrow genetic variation. Both SSR and AFLP markers showed some similarity in results for the landraces, although SSR provided better genetic differentiation estimates. Genetic differentiation (Fst) in the landrace population was 0.746 for SSR and 0.656 for AFLP. The molecular variance among cultivars in both populations accounted for up to 83% of the overall variation, while 17% was found within populations. Gene diversity (He) estimated within each population varied with an average value of 0.607 for the landraces and 0.594 for the elite lines. Analyses of SSR data using ordination techniques identified additional cluster groups not detected by AFLP and also captured maximum variation within and between both populations. Our results indicate the importance of SSR and AFLP as efficient markers for the analysis of genetic diversity and population structure in cassava. Genetic differentiation analysis of the evaluated populations provides high prospects for identifying diverse parental combinations for the development of segregating populations for genetic studies and the introgression of desirable genes from diverse sources into the existing genetic base.  相似文献   

6.
Many terrestrial orchids are historically rare and occur in small, spatially isolated populations. Theory predicts that such species will harbour low levels of genetic variation within populations and will exhibit a high degree of population genetic divergence, primarily as a result of genetic drift. If the origin of the present‐day populations is relatively recent from the same genetically depauperate source population, a complete lack of genetic differentiation between conspecific populations is expected. If a terrestrial orchid was historically common with moderate or high levels of genetic diversity, but has experienced more recent anthropogenic disturbance as a result of over‐collection, it would still exhibit initial levels of genetic variation within populations and a low degree of genetic divergence between populations. To test these predictions, we examined the genetic diversity in six populations (N = 131) of the historically and currently rare Cypripedium japonicum and in four populations (N = 94) of the historically common but now rare C. macranthos from South Korea. Fourteen putative allozyme loci resolved from eight enzyme systems revealed no variation either within or among populations of C. japonicum, which supports the first prediction. In contrast, populations of C. macranthos harboured high levels of genetic variation (mean percentage of polymorphic loci %P = 46.7; mean expected heterozygosity He = 0.185) and exhibited a low degree of population genetic divergence (GST = 0.059), supporting the second prediction. The lack of genetic variation both within and among conspecific populations of C. japonicum may suggest that populations originated from the same genetically depauperate ancestral population. The high levels of genetic diversity maintained in populations of C. macranthos suggest that the collection‐mediated decrease in the number of individuals is still too recent for long‐term effects on genetic variation. Based on current demographic and genetic data, in situ and ex situ conservation strategies should be provided to preserve genetic variation and to ensure the long‐term survival of the two species in the Korean Peninsula. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 119–129.  相似文献   

7.
Cassava (Manihot esculenta) is an allogamous, vegetatively propagated, Neotropical crop that is also widely grown in tropical Africa and Southeast Asia. To elucidate genetic diversity and differentiation in the crop's primary and secondary centers of diversity, and the forces shaping them, SSR marker variation was assessed at 67 loci in 283 accessions of cassava landraces from Africa (Tanzania and Nigeria) and the Neotropics (Brazil, Colombia, Peru, Venezuela, Guatemala, Mexico and Argentina). Average gene diversity (i.e., genetic diversity) was high in all countries, with an average heterozygosity of 0.5358 ± 0.1184. Although the highest was found in Brazilian and Colombian accessions, genetic diversity in Neotropical and African materials is comparable. Despite the low level of differentiation [Fst(theta) = 0.091 ± 0.005] found among country samples, sufficient genetic distance (1-proportion of shared alleles) existed between individual genotypes to separate African from Neotropical accessions and to reveal a more pronounced substructure in the African landraces. Forces shaping differences in allele frequency at SSR loci and possibly counterbalancing successive founder effects involve probably spontaneous recombination, as assessed by parent-offspring relationships, and farmer-selection for adaptation.Communicated by H.C. Becker  相似文献   

8.
We examined levels of genetic variation and genetic structure in the leafy cactus (Pereskia guamacho) in arid and semiarid zones in Venezuela. We surveyed genetic diversity within 17 populations using 19 allozyme loci. Genetic diversity was relatively high at both the species (P(s) = 89%, A(s) = 3.26, AP(s) = 3.53, H(es) = 0.24) and population (P(p) = 63%, A(p) = 1.90, AP(p) = 2.42, H(ep) = 0.20) levels. A significant deficit of heterozygote individuals was detected within populations in the Paraguana Peninsula region (F(IS) = 0.301). Relatively low levels of population differentiation were detected at macrogeographic (G(ST) = 0.112) and regional levels (G(ST) = 0.044 for peninsula region and G(ST) = 0.074 for mainland region), suggesting substantial genetic exchange among populations; however, gene flow in this species seems to be regulated by the distance among populations. Overall, estimates of genetic diversity found in P. guamacho are concordant with the pattern observed for other cacti surveyed, namely high levels of polymorphism and genetic diversity with one common allele and several rare alleles per locus. Differences in gene dispersal systems between this species and other cacti studied were not reflected in the patterns of genetic diversity observed. The concentration of the highest estimates of genetic variation in northwestern Venezuela suggests a potential reservoir of plant genetic diversity within xerophilous ecosystems in northern South America.  相似文献   

9.
This study attempts to ascertain genetic affinities between Native American and East Asian populations by analyzing four polymorphic Alu insertions (PAIs) and three L1 polymorphic loci. These two genetic systems demonstrated strong congruence when levels of diversity and genetic distances were considered. Overall, genetic relatedness within Native American groups does not correlate with geographical and linguistic structure, although strong grouping for Native Americans with East Asians was demonstrated, with clear discrimination from African and European groups. Most of the variation was assigned to differences occurring within groups, but the interpopulation variation found for South Amerindians was recognizably higher in comparison to the other sampled groups of populations. Our data suggest that bottleneck events followed by strong influence of genetic drift in the process of the peopling of the Americas may have been determinant factors in delineating the genetic background of present-day South Amerindians. Since no clear subgroups were detected within Native Americans and East Asians, there is no indication of multiple waves in the early colonization of the New World.  相似文献   

10.
11.
Heliconia uxpanapensis (Heliconiaceae) is an outcrossing endemic herb that grows within continuous and fragmented areas of the tropical rain forest of southeast Veracrúz (México). The genetic diversity, population differentiation, and genetic structure of seven populations of the studied species were assessed using inter‐simple sequence repeat) markers. Population differentiation was moderately high (FST range: 0.18–0.22) and indirect estimates of gene flow were rather low (Nm=0.65–0.83). Analysis of molecular variance indicated that the populations explained 22.2 percent of the variation, while individuals within the populations accounted for 77.8 percent. The similar and high level of genetic diversity found within populations of the continuous and fragmented forest suggests that H. uxpanapensis has not suffered yet the expected negative effect of fragmentation. Genetic structure analyses indicated the presence of fewer genetic clusters (K=4) than populations (N=7). Three of the four fragmented forest populations were assigned each to one of the clusters found within the continuous forest, suggesting the absence of a negative fragmentation effect on the amount and distribution of genetic variation. Given the significant genetic structure combined with high genetic diversity and low levels of gene flow, theoretical simulations indicated that H. uxpanapensis might be highly susceptible to changes in the mating system, which promotes inbreeding within fragmented populations. Thus, future conservation efforts in this species should be directed to ensure that levels of gene flow among populations are sufficient to prevent an increment in the magnitude of inbreeding within fragments.  相似文献   

12.
Zong M  Liu HL  Qiu YX  Yang SZ  Zhao MS  Fu CX 《Biochemical genetics》2008,46(3-4):180-196
Dysosma pleiantha, an important threatened medicinal plant species, is restricted in distribution to southeastern China. The species is capable of reproducing both sexually and asexually. In this study, inter-simple sequence repeat marker data were obtained and analyzed with respect to genetic variation and genetic structure. The extent of clonality, together with the clonal and sexual reproductive strategies, varied among sites, and the populations under harsh ecological conditions tended to have large clones with relatively low clonal diversity caused by vegetative reproduction. The ramets sharing the same genotype show a clumped distribution. Across all populations surveyed, average within-population diversity was remarkably low (e.g., 0.111 for Nei’s gene diversity), with populations from the nature reserves maintaining relatively high amounts of genetic diversity. Among all populations, high genetic differentiation (AMOVA: ΦST = 0.500; Nei’s genetic diversity: G ST = 0.465, Bayesian analysis: ΦB = 0.436) was detected, together with an isolation-by-distance pattern. Low seedling recruitment due to inbreeding, restricted gene flow, and genetic drift are proposed as determinant factors responsible for the low genetic diversity and high genetic differentiation observed.  相似文献   

13.
Pueraria lobata (kudzu), a clonal, leguminous vine, is invading the southeastern United States at a rate of 50 000 ha per year. Genetic variability and clonal diversity were measured in 20 southeastern U.S. populations using 14 allozyme loci. Within its U.S. range, 92.9% of the loci were polymorphic and overall genetic diversity was 0.290. Such high levels of genetic diversity are consistent with its history of multiple introductions over an extended period of time. The average proportions of polymorphic loci and genetic diversity within populations were 55.7% (range = 28.6–85.7%) and 0.213 (range = 0.114–0.317), respectively. The proportion of total genetic diversity found among populations was similar to species with equivalent life history characters (GST = 0.199). No regional patterns of variation were seen. The number of putative genotypes in each population ranged from 2 to 26. Mean genotypic diversity was 0.694, ranging from 0.223 to 0.955. Such high levels of genotypic diversity indicate that local sites are often colonized by several propagules (most likely seeds) and/or that sexual reproduction occurs within populations after establishment. An excess of heterozygosity was observed in populations with few unique genets, implying that selection for highly heterozygous individuals may occur in populations of P. lobata.  相似文献   

14.
Bittersweet (Solanum dulcamara), a European native weed, is widespread across a variety of habitats and often occurs as a coloniser of open, disturbed, ephemeral environments or wetlands, although it is also found in mountain habitats and on forest edges. As recent studies have shown the potential utility of the species in plant breeding programs, we assembled a collection of bittersweet germplasm from natural populations found in Europe. This collection was analysed with conserved DNA‐derived polymorphism (CDDP) and intron‐targeting (IT) markers to assess genetic diversity found within and among the populations. We found that there is limited genetic variability within the collected S. dulcamara accessions, with a greater proportion of allelic variation distributed among populations and considerably greater population structure at higher regional levels. Although bittersweet is an outcrossing species, its population structure might be affected by its perennial self‐compatible nature, reducing genetic diversity within regional populations and enhancing inbreeding leading to high interpopulation or spatial differentiation. We found that populations have been separated by local selection of alleles, resulting in regional differentiation. This has been accompanied by concurrent loss of genetic diversity within populations, although this process has not affected species‐level genetic diversity. Germplasm collecting strategies should be aimed at preserving overall genetic diversity in bittersweet nightshade by expanding sampling to southern Europe and to smaller regional geographic levels in northern and central Europe.  相似文献   

15.
Allozyme variation at eleven loci encoding seven enzyme systems were examined in 20 populations of diploid (genome AA, 2n = 16)Scilla scilloides in China. In comparison with the average species of seed plants studied, populations of this species display a high amount of genetic variation (A = 2.0, P = 58.6%, Ho = 0.172, and He = 0.185). Allozyme variation pattern revealed predominant outcrossing within populations and considerable differentiation (FST = 0.314) among populations as well as between the subtropic and temperate regions. The wide distribution, long existence and outcrossing are presumably the main factors responsible for the high genetic diversity within populations. But the gravity dispersal of seeds and pollination by small insects set limits to the increase of genetic variation within populations and promote differentiation between populations and regions. In addition, allozyme variation does not distinguishS. scilloides var.albo-viridis and suggests that subtropic populations may be considered as a genetic entity.  相似文献   

16.
Tradescantia hirsuticaulis, the hairy-stemmed spiderwort, is an insect-pollinated perennial plant species found primarily on rock outcrops in Georgia, South Carolina, and Alabama. Although populations of T. hirsuticaulis are rare and scattered, local populations are frequently large. Levels of genetic variation were assessed for 13 populations representing the species' range in these three states. Despite the disjunct distribution of this habitat specialist and apparent lack of specialized seed and pollen dispersal mechanisms, exceptionally high levels of genetic variation are maintained within the species, with a moderate level of variation (18%) found among populations. Twenty-nine of the 33 loci resolved (88%) were polymorphic within the species; the mean number of loci polymorphic within populations was 54%. The mean number of alleles per polymorphic locus was 3.24 across all populations and averaged 2.37 within populations. Genetic diversity was 0.206 for the species, whereas mean population genetic diversity was 0.157, both much higher than the average for other short-lived herbaceous perennials. Estimated levels of gene flow were moderate (Nm = 0.95), and a significant association between geographic distance and genetic distance between populations was found (r = 0.68; P < 0.0001). Habitat destruction is the major threat to this genetically diverse species. Since gene flow among its highly dispersed populations is limited, diminution or extinction of local populations could jeopardize the long-term evolutionary potential of this species.  相似文献   

17.
An isozyme investigation of the Lisianthius skinneri (Gentianaceae) species complex in central Panama assayed levels of genetic variation within and among isolated populations and was used to reconstruct phylogenetic relationships within the complex. The widespread and low elevation L. skinneri and one derived cloud forest endemic species, L. habuensis, are depauperate in genetic variation. Three other endemic cloud forest species exhibiting larger population sizes and apparently more outcrossed breeding systems have higher levels of heterozygosity but retain low levels of allelic diversity. More than 90% of the genetic variation in the species complex is confined to among-population differentiation rather than witnin-population variation. Isozyme-based relationships within the species complex using both genetic divergence values (Fitch and Margoliash algorithm) and shared allelic states (Nelson and Van Horn algorithm) are identical. This network is not entirely congruent with a previous DNA-based network. Geographical isolation, small population size, low allelic diversity, and high levels of among-population differentiation suggest that repeated instances of founder events and genetic drift have been important in the evolution of this tropical shrub complex.  相似文献   

18.
Liatris helleri (Asteraceae) is an insect-pollinated herbaceous perennial endemic to several high-elevation sites in the Blue Ridge Mountains of North Carolina. Allozymes were used to describe the genetic diversity and population structure in nine populations of this rare, federally listed species. Differences in leaf morphology were also examined for greenhouse-grown plants representing several populations. The proportion of the total genetic diversity found among populations, as indicated by the allozyme data, was 16%. Higher levels of population differentiation were found for differences in leaf shape; population of origin accounted for 37% of the variation in maximum leaf width, while families within populations accounted for 7%. In contrast to many endemic species, L. helleri maintains fairly high levels of genetic diversity. For the species, the percent polymorphic loci was 87.5, the average number of alleles at variable loci was 3.00 and the gene diversity was 0.276. Mean population values were percent polymorphic loci =58.4, mean number of alleles per polymorphic locus =2.59 and gene diversity =0.219. The estimated gene flow was low (Nm=0.85–1.32) and a relatively high correlation (r=0.55; p<0.005) was found between linear geographic and genetic distance. This suggests that the populations are partially isolated by distance, despite the limited range (<60 km) of the species. We recommend that population distinetiveness be maintained in restoration efforts.  相似文献   

19.
Summary Six fruit characters have been measured in 23 cultivars of Cucumis melo, representing a wide geographical range. Plants were grown both in the greenhouse and in the field. When the 23 cultivars were analyzed together, the largest component of variance was found between cultivars under both growth conditions, suggesting the existence of large genetic diversity for all the characters studied. Generally, variance between plants within cultivars was less than or equal to variance between fruits within plant. This indicates that environmental variation is the most important part of the variation within cultivars. Correlations between pairs of characters at cultivar, plant and fruit levels were calculated from the variance-covariance components. In the majority of paired traits, the correlation values indicated that genetic and environmental factors may act in the same direction.  相似文献   

20.
Many in situ conservation programs have been developed to preserve plant landrace diversity and to promote its sustainable utilization, but little is known about the effectiveness of the developed programs in conserving plant genetic diversity. We investigated the effectiveness of an unregulated (i.e., unplanned or open) conservation system maintained by Thai farmers in conserving Thai elite cassava (Manihot esculenta Crantz) varieties. Specifically, we compared genetic diversity of 266 cassava clones that were collected from 80 farms in eight provinces with 16 cassava landraces and varieties released since the 1970s through genotyping with 35 informative simple sequence repeat (SSR) markers. The SSR analysis revealed a large regional heterogeneity in cassava diversity, with a strong genetic differentiation of the assayed clones among the 80 farms (19.8 %) and across the eight provinces (11.8 %). Significant associations were also found between SSR variation and farm agro-ecological factors or some farming practices. However, there was no significant genetic differentiation (0.9 %) between the 266 farm clones and 16 reference varieties. These findings suggest that the Thai elite cassava genetic diversity was fortuitously conserved by the farmers through farming with different sets of varieties. Implications of these findings are discussed with respect to on-farm conservation of plant genetic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号