首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcin E492 is a channel-forming bacteriocin that is found in two forms, namely, a posttranslationally modified form obtained by the covalent linkage of salmochelin-like molecules to serine 84 and an unmodified form. The production of modified microcin E492 requires the synthesis of enterochelin, which is subsequently glycosylated by MceC and converted into salmochelin. mceC mutants produced inactive microcin E492, and this phenotype was reversed either by complementation with iroB from Salmonella enterica or by the addition of exogenous salmochelin. Cyclic salmochelin uptake by Escherichia coli occurred mainly through the outer membrane catecholate siderophore receptor Fiu. The production of inactive microcin E492 by mutants in entB and entC was reverted by the addition of the end product of the respective mutated pathway (2,3-dihydroxybenzoic acid and enterochelin/salmochelin, respectively), while mutants in entF did not produce active microcin E492 in the presence of enterochelin or salmochelin. The EntF adenylation domain was the only domain required for this microcin E492 maturation step. Inactivation of the enzymatic activity of this domain by site-directed mutagenesis did not prevent the synthesis of active microcin E492 in the presence of salmochelin, indicating that the adenylation activity is not essential for the function of EntF at this stage of microcin E492 maturation.  相似文献   

2.
Microcin E492 is a low-molecular-weight, channel-forming bacteriocin produced and excreted by Klebsiella pneumoniae RYC492. A 13 kb chromosomal DNA fragment from K. pneumoniae RYC492 was sequenced, and it was demonstrated by random Tn5 mutagenesis that most of this segment, which has at least 10 cistrons, is needed for the production of active microcin and its immunity protein. Genes mceG and mceH correspond to an ABC exporter and its accessory protein, respectively, and they are closely related to the colicin V ABC export system. The microcin E492 system also requires the product of gene mceF as an additional factor for export. Despite the fact that this bacteriocin lacks post-translational modifications, genes mceC, mceI and mceJ are needed for the production of active microcin. Genes mceC and mceI are homologous to a glycosyl transferase and acyltransferase, respectively, whereas mceJ has no known homologue. Mutants in these three genes secrete an inactive form of microcin, able to form ion channels in a phospholipidic bilayer, indicating that the mutation of these microcin genes does not alter the process of membrane insertion. On the other hand, microcin isolated from mutants in genes mceC and mceJ has a lethal effect when incubated with spheroplasts of sensitive cells, indicating that the microcin defects in these mutants are likely to alter receptor recognition at the outer membrane. A model for synthesis and export is proposed as well as a novel maturation pathway that would involve conformational changes to explain the production of active microcin E492.  相似文献   

3.
Microcin E492, a channel-forming bacteriocin with the ability to form amyloid fibers, is exported as a mixture of two forms: unmodified (inactive) and posttranslationally modified at the C terminus with a salmochelin-like molecule, which is an essential modification for conferring antibacterial activity. During the stationary phase, the unmodified form accumulates because expression of the maturation genes mceIJ is turned off, and microcin E492 is rapidly inactivated. The aim of this work was to demonstrate that the increase in the proportion of unmodified microcin E492 augments the ability of this bacteriocin to form amyloid fibers, which in turn decreases antibacterial activity. To this end, strains with altered proportions of the two forms were constructed. The increase in the expression of the maturation genes augmented the antibacterial activity during all growth phases and delayed the loss of activity in the stationary phase, while the ability to form amyloid fibers was markedly reduced. Conversely, a higher expression of microcin E492 protein produced concomitant decreases in the levels of the modified form and in antibacterial activity and a substantial increase in the ability to form amyloid fibers. The same morphology for these fibers, including those formed by only the unmodified version, was observed. Moreover, seeds formed using exclusively the nonmodified form were remarkably more efficient in amyloid formation with a shorter lag phase, indicating that the nucleation process is probably improved. Unmodified microcin E492 incorporation into amyloid fibers was kinetically more efficient than the modified form, probably due to the existence of a conformation that favors this process.  相似文献   

4.
Microcin E492 is a polypeptide antibiotic that is produced and excreted by Klebsiella pneumoniae RYC492. The genetic determinants for microcin synthesis and immunity were cloned in Escherichia coli VCS257 into the cosmid vector pHC79, starting from total DNA of K. pneumoniae RYC492. The microcin E492 expressed in E. coli had the same properties as that of K. pneumoniae, i.e., the same molecular weight, the ability to form ionic channels in planar phospholipid bilayers, and essentially identical biological properties. Microcin E492 expression in E. coli, like that in K. pneumoniae, was mainly in the exponential phase of growth, declining in the stationary phase. The immunity determinant was subcloned into the same vector, and its expression was found to disappear in the stationary phase. This phenomenon is not dependent on rpoS, the stationary-phase sigma factor.  相似文献   

5.
The production of a dialysable peptidic antibacterial named microcin E492 by the strain of faecal originKlebsiella pneumoniae RYC492 has previously been reported. In this paper, a procedure to extract this antibiotic from liquid cultures of the producer strain is described. This method was based in the quantitative retention of the microcin on the hydrophobic matrix Bondapak C18 and led to highly active pigment- and salf-free concentrates appropriate for further purification by high pressure liquid chromatography. The characterization of purified preparations indicated that microcin E492 was a basic and hydrophobic peptide with an apparent molecular mass of about 5,000, acid- and heat-resistant and much more active in minimal than in rich medium. These properties are discussed with regard to the likely ecological role of the microcin in the microbial ecosystem of the intestine.Abbreviations AU Antibiotic Unit - CFU Colony-forming units - HPLC High Pressure Liquid Chromatography - Mr Relative molecular mass - RP Reversed phase - TEAP Triethylamine-phosphoric acid  相似文献   

6.
Abstract Microcin E492 is a polypeptide antibiotic that is produced and excreted by Klebsiella pneumoniae . Different growth conditions of the producer strain affect microcin activity. The production of a microcin antagonist is responsible for the changes in microcin activity. The microcin antagonist is induced when cells are iron-deprived, resulting in a low microcin activity. The microcin antagonist was purified using a procedure developed for the isolation of a catechol-type siderophore, and its activity was titrated using purified microcin. The inhibitory effect of the microcin antagonist is not observed when this compound is forming a complex with iron. The same inhibitory effect on microcin activity was obtained using purified enterochelin from Escherichia coli . The microcin antagonist was identified as enterochelin through thin-layer chromatography.  相似文献   

7.
8.
Microcin J25 is a 2,107-Da, plasmid-encoded, cyclopeptide antibiotic produced by Escherichia coli. We have isolated lacZ fusions to mcjA (encoding the 58-amino-acid microcin precursor) and mcjB and mcjC (which are required for microcin maturation), and the regulation of these fusions was used to identify factors that control the expression of these genes. The mcjA gene was found to be dramatically induced as cells entered the stationary phase. Expression of mcjA could be induced by resuspending uninduced exponential-phase cells in spent supernatant obtained from an early-stationary-phase culture. Induction of mcjA expression was not dependent on high cell density, pH changes, anaerobiosis, or the buildup of some inducer. A starvation for carbon and inorganic phosphate induced mcjA expression, while under nitrogen limitation there was no induction at all. These results taken together suggest that stationary-phase induction of mcjA is triggered by nutrient depletion. The mcjB and mcjC genes were also regulated by the growth phase of the culture, but in contrast to mcjA, they showed substantial expression already during exponential growth. Induction of the microcin genes was demonstrated to be independent of RpoS, the cyclic AMP-Crp complex, OmpR, and H-NS. Instead, we found that the growth-phase-dependent expression of mcjA, mcjB, and mcjC may be explained by the concerted action of the positively acting transition state regulators ppGpp, Lrp, and integration host factor. Measurements of microcin J25 production by strains defective in these global regulators showed a good correlation with the reduced expression of the fusions in such mutant backgrounds.  相似文献   

9.
The gene coding for the immunity protein (mceB) and the structural gene of microcin E492 (mceA), a low-molecular-weight channel-forming bacteriocin produced by a strain of Klebsiella pneumoniae, have been characterized. The microcin gene codes for a precursor protein of either 99 or 103 amino acids. Protein sequencing of the N-terminal region of microcin E492 unequivocally identified this gene as the microcin structural gene and indicated that this microcin is synthesized as a precursor protein that is cleaved at either amino acid 15 or 19, at a site resembling the double-glycine motif. The gene encoding the 95-amino-acid immunity protein (mceB) was identified by cloning the DNA segment that encodes only this polypeptide into an expression vector and demonstrating the acquisition of immunity to microcin E492. As expected, the immunity protein was found to be associated with the inner membrane. Analysis of the DNA sequence indicates that these genes belong to the same family as microcin 24, and they do not share structural motifs with any other known channel-forming bacteriocin. The organization of the microcin- and immunity protein-encoding genes suggests that they are coordinately expressed.  相似文献   

10.
11.
Gene ompR and regulation of microcin 17 and colicin e2 syntheses.   总被引:11,自引:8,他引:3       下载免费PDF全文
The production of microcin 17 is controlled by plasmid pRYC17. Chromosomal mutants unable to produce a normal amount of microcin were isolated in Escherichia coli. One of the mutations maps in the ompR locus, indicating that an active OmpR product is required for the synthesis of microcin 17. The same conclusion was obtained for the synthesis of colicin E2. Therefore, two new functions of the regulatory gene ompR have been revealed.  相似文献   

12.
As Escherichia coli strains enter the stationary phase of growth they become more resistant to the peptide antibiotic microcin J25. It is known that starvation for nutrients such as amino acids or glucose leads to increases in guanosine 3',5'-bispyrophosphate (ppGpp) levels and that the intracellular concentration of this nucleotide increases as cells enter the stationary phase of growth. Therefore, we examined the effects of artificially manipulating the ppGpp levels on sensitivity to microcin J25. A direct correlation was found between ppGpp accumulation and microcin resistance. Our results indicate that the nucleotide is required to induce production of YojI, a chromosomally encoded efflux pump which, in turn, expels microcin from cells. This would maintain the intracellular level of the antibiotic below a toxic level.  相似文献   

13.
Microcin E492 is a low-molecular weight, channel-forming bacteriotoxin that generates amyloid structures. Using electron microscopy and image processing techniques several structural conformations can be observed. Prior to the conditions that induce amyloid formation and at its initial stage, microcin E492 molecules can be found in two main types of oligomers: a pentameric, pore-like structure consisting of globular monomers of ~25? diameter, and long filaments made up of stacked pentamers. The equilibrium between these structures depends on the properties of the solvent, because samples kept in methanol mainly show the pentameric structure. Amyloid induction in aqueous solvent reveals the presence, together with the above mentioned structures, of several amyloid structures such as flat and helical filaments. In addition, X-ray diffraction analysis demonstrated that the fibrils formed by microcin E492 presented cross-β structure, a distinctive property of amyloid fibrils. Based on the study of the observed structures we propose that microcin E492 has two conformations: a native one that assembles mainly into a pentameric structure, which functions as a pore, and an amyloid conformation which results in the formation of different types of amyloid filaments.  相似文献   

14.
A Tn5 insertion in tolC eliminated microcin J25 production. The mutation had little effect on the expression of the microcin structural gene and presumably acted by blocking microcin secretion. The tolC mutants carrying multiple copies of the microcin genes were less immune to the microcin. TolC is thus likely a component of a microcin export complex containing the McjD immunity protein, an ABC exporter.  相似文献   

15.
Microcin B17 is a low-molecular-weight protein that inhibits DNA replication in a number of enteric bacteria. It is produced by bacterial strains which harbor a 70-kilobase plasmid called pMccB17. Four plasmid genes (named mcbABCD) are required for its production. The product of the mcbA gene was identified by labelling minicells. The mcbA gene product was slightly larger when a mutation in any of the other three production genes was present. This indicates that these genes are involved in processing the primary mcbA product to yield the active molecule. The mcbA gene product predicted from the nucleotide sequence has 69 amino acids including 28 glycine residues. Microcin B17 was extracted from the cells by boiling in 100 mM acetic acid, 1 mM EDTA, and purified to homogeneity in a single step by high-performance liquid chromatography through a C18 column. The N-terminal amino acid sequence and amino acid composition demonstrated that mcbA is the structural gene for microcin B17. The active molecule is a processed product lacking the first 26 N-terminal residues. The 43 remaining residues include 26 glycines. While microcin B17 is an exported protein, the cleaved N-terminal peptide does not have the characteristic properties of a "signal sequence", which suggests that it is secreted by a mechanism different from that used by most secreted proteins of E. coli.  相似文献   

16.
It was earlier shown that expression of the microcin C51 operon in Escherichia coli cells is activated upon decelerated growth of cells during their transition to the stationary growth phase and depends on the sigmaS subunit of RNA polymerase. Using a single-copy construct containing the cloned promoter region of the microcin C51 operon and a promoterless lac operon (P(mcc)-lac), it was shown that the promoter of the microcin operon was also induced by stress caused by the transition of cells at the exponential growth phase into the medium without glucose as a sole carbon source. Activation of P(mcc)-lac expression upon severe glucose starvation occurred in rpoS+ and rpoS- strains. In cells carrying the rpoD800 mutation that renders the sigma70 subunit of RNA polymerase temperature-sensitive, an activation of P(mcc)-lac expression was observed at nonpermissive temperature, in contrast to its complete inhibition in E. coli cells at the phase of delayed growth. Other stressors-nitrogen starvation, high temperatures, osmotic shock, tetracycline and chloramphenicol-did not activate P(mcc)-lac expression in cells at the exponential growth phase.  相似文献   

17.
18.
19.
Plasmid pMccB17 (70 kilobases [kb]) codes for the production of microcin B17, a peptide that inhibits DNA synthesis, and for microcin B17 immunity. A BamHI-EcoRI fragment of 5.1 kb from pMccB17 was cloned into pBR322 in two steps. The resulting plasmid (pMM102) overproduced microcin B17 and expressed immunity against microcin. Mcc- and Mcc- Imm- mutants were isolated on plasmids pMccB17 and pMM102 by deleting various DNA fragments and by inserting different translocatable elements. Physical and phenotypic characterization of these mutants showed that a DNA region of 3.0 to 3.5 kb is required to produce microcin B17, whereas an adjacent region of about 1.0 kb is required to express microcin B17 immunity.  相似文献   

20.
AIMS: Isolation of bacteriocinogenic lactic acid bacteria (LAB) from the Malaysian mould-fermented product tempeh and characterization of the produced bacteriocin(s). METHODS AND RESULTS: LAB were present in high numbers in final products as well as during processing. Isolates, Enterococcus faecium B1 and E. faecium B2 (E. faecium LMG 19827 and E. faecium LMG 19828, respectively) inhibited Gram-positive indicators, including Listeria monocytogenes. Partially purified bacteriocins showed a proteinaceous nature. Activity was stable after heat-treatment except at alkaline pH values. Both strains displayed a bacteriostatic mode of action. Bacteriocin production was associated with late exponential/early stationary growth. Molecular mass, calculated by SDS-PAGE, was 3.4 kDa for B1 bacteriocin, and 3.4 kDa and 5.8 kDa for B2 bacteriocins. PCR screening of enterocin-coding genes revealed three amplified fragments in total genomic DNA that may correspond with PCR signals for enterocin P, enterocin L50A and enterocin L50B. Both B1 and B2 contained a 42-kb plasmid. No differences in bacteriocinogenic capacity were found between wild type strains and plasmid-cured strains. CONCLUSIONS: It was possible to isolate bacteriocinogenic E. faecium active against various Gram-positive bacteria from final products of tempeh. SIGNIFICANCE AND IMPACT OF THE STUDY: A first step in applying biopreservation to fermented South-east Asian foods is to obtain bacteriocinogenic LAB from this source. Such isolates may also be used for biopreservation of mould-fermented foods in general, including various types of mould-ripened cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号