首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fate of 6alpha- and 6beta-hydrogens of lathosterol during the transformation into 20-hydroxyecdysone was chased by feeding [3alpha,6beta-2H2]- and [3alpha,6alpha-2H2]-lathosterols to hairy roots of Ajuga reptans var. atropurpurea. The behavior of 6beta-hydrogen, which mostly migrated to the C-5 position of 20-hydroxyecdysone, was in agreement with that of C-6 hydrogen of cholesterol. The results strongly supported the view that cholesterol and lathosterol are first metabolized into 7-dehydrocholesterol, which is then converted into 20-hydroxyecdysone via 7-dehydrocholesterol 5alpha,6alpha-epoxide in the hairy roots.  相似文献   

2.
A capillary gas chromatographic–mass spectrometric method for the simultaneous determination of 6β-hydroxycortisol (6β-OHF, 6β,11β,17α,21-tetrahydroxypregn-4-ene-3,20-dione), 6α-hydroxycortisol (6α-OHF, 6α,11β,17α,21-tetrahydroxypregn-4-ene-3,20-dione) and 6β-hydroxycortisone (6β-OHE, 6β,17α,21-trihydroxypregn-4-ene-3,11,20-trione) in human urine is described. Deuterium-labelled compounds, 6β-[1,1,19,19,19-2H5]OHF (6β-OHF-d5), 6α-[1,1,19,19,19-2H5]OHF (6α-OHF-d5) and 6β-[1,1,19,19,19-2H5]OHE (6β-OHE-d5) were used as internal standards. Quantitation was carried out by selected-ion monitoring of the characteristic fragment ions ([M-31]+) of the methoxime–trimethylsilyl (MO–TMS) derivatives of 6β-OHF, 6α-OHF and 6β-OHE. The sensitivity, specificity, precision and accuracy of the method were demonstrated to be satisfactory for measuring 6β-OHF, 6α-OHF and 6β-OHE in human urine.  相似文献   

3.
α-Melanotropin (α-MSH) retains less than 1% of its original activity after a 60 min incubation with 10% rat brain homogenate. [Nle4, D-Phe7]-α-MSH is nonbiodegradable in rat serum (240 min incubation) and still maintains 10% of its original activity in 10% rat brain homogenate (240 min incubation). The related fragment analogue, Ac-[Nle4, D-Phe7]-α-MSH4–10-NH2, retains 50% of its activity after a 240 min incubation in rat brain homogenate, whereas Ac-[Nle4, D-Phe7]-α-MSH4–11-NH2 is totally resistant to inactivation by rat brain homogenate. Both [Nle4, D-Phe7]-fragments are resistant to degradation by rat serum, but [Nle4]-α-MSH, Ac-[Nle4]-α-MSH4–10-NH2 and Ac-[Nle4]-α-MSH4–11-NH2 are rapidly inactivated under both conditions. The cyclic melanotropin, [ ]-α-MSH, is inactivated in rat brain homogenate as is the shorter Ac-[ ]-α-MSH4–10-NH2 analogue, but neither cyclic melanotropin is inactivated upon incubation in serum from rats. Ac-[ ]-α-MSH4–10-NH2 is resistant to inactivation by either rat serum or a brain homogenate. Some of these melanotropin analogues may provide useful probes for the localization and characterization of putative melanotropin receptors in both the central nervous system and peripheral tissues.  相似文献   

4.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

5.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

6.
1. 26-Hydroxycholesterol was obtained by reducing the methyl ester of (±)-3β-hydroxycholest-5-en-26-oic acid, which was synthesized from 25-oxonorcholesterol. 2. Methods for preparing 7α-hydroxycholesterol and 7-dehydrocholesterol were modified to allow the micro-scale preparation of these [14C]sterols from [26-14C]-cholesterol. 3. 26-Hydroxycholesterol was oxidized more readily than 7α-hydroxycholesterol, 7-dehydrocholesterol or cholesterol by mitochondrial preparations from livers of mice, rats, guinea pigs, common toads (Bufo vulgaris) and Caiman crocodylus. 4. (±)-3β-Hydroxy[26-14C]cholest-5-en-26-oic acid was oxidized very rapidly to 14CO2 by mouse and guinea-pig mitochondria without evident discrimination between the two optical isomers. 5. An enzyme system that oxidizes 26-hydroxycholesterol to 3β-hydroxycholest-5-en-26-oic acid was identified in the soluble extract of rat-liver mitochondria. This enzyme could use NADP in place of NAD but was not identical with liver alcohol dehydrogenase (EC 1.1.1.1). 6. [26-14C]Cholesteryl 3β-sulphate was not oxidized by fortified mouse-liver preparations that oxidized [26-14C]cholesterol to 14CO2.  相似文献   

7.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation–reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2–7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

8.
A method based on gas chromatography–mass spectrometry–selected-ion monitoring was developed to measure the main metabolites of 17α-methyltestosterone, 17α-methyl-5α-androstan-3α,17β-diol and 17α-methyl-5β-androstan-3α,17β-diol, in human urine. 17α-Methyl-[2H3]-5α-androstan-3α,17β-diol and 17α-methyl-[2H3]-5β-androstan-3α,17β-diol were used as internal standards. The methods involved purification using a Sep-Pak C18 cartridge, hydrolysis by β-glucuronidase from Ampullaria and derivatization with N-methyl-N-trimethylsilyl-trifluoroacetamide/dithioerythriol/ammonium iodide. Quantitation was achieved by selected-ion monitoring of the characteristic fragment ions ([(M+H)−2×TMSOH]+) of the di-TMS derivatives on the chemical ionization mode. The method provides a specific, sensitive and reliable technique to determine the urine levels of 17α-methyl-5α-androstan-3α,17β-diol and 17α-methyl-5β-androstan-3α,17β-diol, and can be applied to pharmacokinetic studies of 17α-methyltestosterone.  相似文献   

9.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

10.
β-(1→4)-Thiodisaccharides formed by a pentopyranose unit as reducing or non reducing end have been synthesized using a sugar enone derived from a hexose or pentose as Michael acceptor of a 1-thiopentopyranose or 1-thiohexopyranose derivatives. Thus, 2-propyl per-O-acetyl-3-deoxy-4-S-(β-d-Xylp)-4-thiohexopyranosid-2-ulose (3) and benzyl per-O-acetyl-3-deoxy-4-S-(β-d-Galp)-4-thiopentopyranosid-2-ulose (11) were obtained in almost quantitative yields. The carbonyl function of these uloses was reduced with NaBH4 or K-Selectride, and the stereochemical course of the reduction was highly dependent on the reaction temperature, reducing agent and solvent. Unexpectedly, reduction of 3 with NaBH4–THF at 0 °C gave a 3-deoxy-4-S-(β-d-Xylp)-4-thio-α-d-ribo-hexopyranoside derivative (6) as major product (74% yield), with isomerization of the sulfur-substituted C-4 stereocenter of the pyranone. Reduction of 11 gave always as major product the benzyl 3-deoxy-4-S-(Galp)-4-thio-β-d-threo-pentopyranoside derivative 14, which was the only product isolated (80% yield) in the reduction with K-Selectride in THF at −78 °C. Deprotection of 14 and its epimer at C-2 (13) afforded, respectively the free thiodisaccharides 19 and 18. They displayed strong inhibitory activity against the β-galactosidase from Escherichia coli. Thus, compound 18 proved to be a non-competitive inhibitor of the enzyme (Ki = 0.80 mM), whereas 19 was a mixed-type inhibitor (Ki = 32 μM).  相似文献   

11.
Ammonium 2,6-anhydro-3-deoy- -glycero- -talo-octonate (1), a potent inhibitor of the enzyme CMP-KDO synthetase, its C-2 epimer 2, and the methyl β-(3) and α-glycoside (4) of KDO were studied by 1H- and 13C-n.m.r. spectroscopy. Compound 1 was also analysed by X-ray crystallography. Each compound adopted a 5C2 chair conformation with the side chain equatorial. The preponderant side-chain conformation of 1 in solution was the same as that in the crystal and was stabilised by an intramolecular hydrogen bond from HO-8 to the carboxylate group. This hydrogen bond appeared to be present also in 3. However, the side-chain conformation of 2 and 4 was different from that in 1 and 3. The metal-ion-binding properties, determined on the basis of the line-broadening effects of Mn2+ on the 13C-n.m.r. signals, showed that the carboxylate group was involved in the binding with O-8 in 1 and 3 and with O-6 and O-8 in 2 and 4.  相似文献   

12.
The conformation and dilute solution properties of (2→1)-β-d-fructan in aqueous solution were studied by gel permeation chromatography, low-angle laser light-scattering photometry, viscometry, small-angle X-ray scattering and electron microscopy. Fractions covering a broad range of weight-average molecular weights (Mw) from 1.49 × 104 to 5.29 × 106 were obtained from a native sample by ultrasonic degradation and fractional precipitation. For Mw < 4 × 104, the intrinsic viscosity [η] varies with Mw0.71, indicating that the fructan chain behaves as a random coil expanded by an excluded-volume effect in this molecular weight region. For Mw > 105, [η] exhibits an unusually weak dependence on Mw and finally becomes almost independent of molecular weight. This behaviour is interpreted in terms of a globular conformation of the high-molecular-weight fructan molecules. Small-angle X-ray-scattering measurements and electron microscopic observations support this interpretation of the values of [η] observed.  相似文献   

13.
The cytoplasmic concentrations of Cl([Cl]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic β-cells isolated from ob/ob mice. Steady-state [Cl]i in unstimulated β-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl into β-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4′ diisothiocyanato-dihydrostilbene-2,2′-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl with the more easily permeating anions SCN, I, NO3 or Br. It is concluded that glucose stimulation of the β-cells is coupled to an increase in their Cl permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl fluxes.  相似文献   

14.
A method for determination of α-ketoisocaproic acid (KIC) and [4,5,5,5,6,6,6-2H7]α-ketoisocaproic acid ([2H7]KIC) in rat plasma was developed using gas chromatography–mass spectrometry-selected ion monitoring (GC–MS-SIM). [5,5,5-2H3]α-Ketoisocaproic acid ([2H3]KIC) was used as an analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. The keto acids were extracted by cation-exchange chromatography using BondElut SCX cartridge and derivatized with N-phenyl-1,2-phenylenediamine to form N-phenylquinoxalinone derivatives. Quantitation was performed by SIM of the respective molecular ions at m/z 278, 281 and 285 for the derivatives of KIC, [2H3]KIC and [2H7]KIC on the electron impact method. The limit of detection was found to be 70 fmol per injection (S/N=3) and the limit of quantitation for [2H7]KIC was around 50 nM in rat plasma. Endogenous KIC concentrations in 50 μl of rat plasma were measured with relative intra- and inter-day precision of 4.0% and 3.3%, respectively. The intra- and inter-day precision for [2H7]KIC spiked to rat plasma in the range of 0.1 to 10 μM gave good reproducibility with relative standard deviation (RSD) of 6.5% and 5.4%, respectively. The intra- and inter-day relative errors (RE) for [2H7]KIC were less than 6.4% and 3.8%, respectively. The method was applied to determine the plasma concentration of [2H7]KIC after an intravenous administration of [2H7]KIC in rat.  相似文献   

15.
A semi-micro assay was developed for the conjugation of 5α,6α-epoxy-cholestan-3β-ol (cholesterol α-oxide) with glutathione. The soluble supernatant of rat liver homogenate catalysed the reaction at a rate of 0.2–0.5 pmol.min−1 .mg protein−1 with 4μM cholesterol α-oxide, while the reaction in the presence of GSH alone was barely detectable. Enzymic activity in the soluble supernatant was due equally to the two forms of glutathione transferase B (100 pmol.min.mg protein−1), glutathione transferases AA, A, C and E being unreactive. The activity of purified glutathione transferase B was about 5-times that expected from the activity of the soluble supernatant. Complex enzyme kinetics were obtained suggestive of substrate inhibition.  相似文献   

16.
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) associated with potent carcinogenic activity. Mutagenesis induced by benzo[a]pyrene DNA adducts is believed to involve error-prone translesion synthesis opposite the lesion. However, the DNA polymerase involved in this process has not been clearly defined in eukaryotes. Here, we provide biochemical evidence suggesting a role for DNA polymerase η (Polη) in mutagenesis induced by benzo[a]pyrene DNA adducts in cells. Purified human Polη predominantly inserted an A opposite a template (+)- and (−)-trans-anti-BPDE-N2-dG, two important DNA adducts of benzo[a]pyrene. Both lesions also dramatically elevated G and T mis-insertion error rates of human Polη. Error-prone nucleotide insertion by human Polη was more efficient opposite the (+)-trans-anti-BPDE-N2-dG adduct than opposite the (−)-trans-anti-BPDE-N2-dG. However, translesion synthesis by human Polη largely stopped opposite the lesion and at one nucleotide downstream of the lesion (+1 extension). The limited extension synthesis of human Polη from opposite the lesion was strongly affected by the stereochemistry of the trans-anti-BPDE-N2-dG adducts, the nucleotide opposite the lesion, and the sequence context 5′ to the lesion. By combining the nucleotide insertion activity of human Polη and the extension synthesis activity of human Polκ, effective error-prone lesion bypass was achieved in vitro in response to the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts.  相似文献   

17.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

18.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

19.
Aspergillus glaucus, cultured on sodium propionate-mineral salts medium, incorporates 14C-glyoxylate into labeled α-hydroxyglutaric acid within 30 sec. Mycelial extracts retain this biosynthetic capacity, which is destroyed by heating. Propionyl-2-14C-coenzyme A also in incorporated into labeled α-hydroxyglutaric acid by these mycelial extracts, but to a more limited extent. 14CO2 evolution studies, employing differentially labeled 14C-propionate, indicate C-1 is oxidized by the mold before C-2, and C-2 before C-3. These findings suggest the involvement of α-hydroxyglutaric acid in the catabolism of propionic acid by A. glaucus.  相似文献   

20.
[19α-3H]Lanost-7-ene-3β-ol is synthesized and is shown to be demethylated by a rat liver homogenate to give 4,4′-dimethylcholesta-7,14-dien-3β-ol. [32-3H]Lanost-8-ene-3β,32-diol is synthesized and is shown to be demethylated by a rat liver microsomal preparation to give 4,4′-dimethylcholesta-8,14-dien-3β-ol with the release of C-32 as formic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号