首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both red light (10 minutes) and 35°C treatment (60 minutes) stimulate the germination of seeds of Rumex obtusifolius otherwise maintained in darkness at 25°C. Fluence response curves were determined for the effect of red light to stimulate germination of seeds with and without 35°C treatment. The endogenous far-red absorbing form (Pfr) level in the seeds was determined using short saturating fluences of wavelengths of light which maintain different proportions of phytochrome as Pfr at equilibrium. In the seed batches investigated, the endogenous Pfr level was found to be 4% or less of the total phytochrome. High dark germination after 35°C treatment does not result from an increase in sensitivity of the whole population to Pfr. Calculated fluence response curves for germination which best fit the experimental data suggest that seeds germinate in darkness after 35°C treatment because of a nonphytochrome-related process (overriding factor).  相似文献   

2.
Dark germination of Amaranthus retroflexus L. seeds at 35° increased after several days of prechilling at 20° or lower. Irradiation with far-red light for short periods during the early hours of a prechilling period at 10° inhibited subsequent dark germination at 35°. The inhibition was completely reversible with red light. Far-red irradiation in the latter part of the prechilling period was less effective. Increased dark germination of A. retroflexus seeds following a prechilling period at 20° or less is attributed to action of preexistent PFR, the far-red absorbing form of phytochrome, within the seeds. Inactivation of PFR was found to proceed ca. 4 times more rapidly at 25° than at 20°. Failure of imbibition temperatures above 20° to increase dark germination of A. retroflexus seeds is attributed to the rapid thermal reversion of pre-existent PFR. We suggest that the action of prechilling (layering) on many other seed kinds arises in a similar way.  相似文献   

3.
The photoinduction period of Oenothera biennis L. seed germination was analyzed by varying the photoinduction temperature and by substituting red light pulses for continuous red light. At 24°C, seeds require 36 hours of continuous red light for maximal percent germination. The optimal photoinduction temperature is 32°C, with higher and lower temperatures being strongly inhibitory. A 30 minute exposure to far-red light, given immediately after a red light period of 1 to 36 hours, reduces germination by about 25%. Seeds escape from far-red inhibition with a half-time of 5 to 10 hours, depending on the length of the red exposure that precedes the far-red light. Periodic 15 minute pulses of red light can substitute for continuous red light in stimulating germination. Ted red light pulses, with 6 hours of darkness between successive pulses, cause maximal germination. The response to periodic red light is fully reversible by far-red light. Probit analysis of the periodic light response shows that as the length of the dark periods between successive pulses increases, less incident light is needed to induce germination but the population variance in light sensitivity remains constant. Probit analysis of the temperature response shows that as the photoinduction temperature increases from 16 to 32°C, less incident light is needed to induce germination and the population variance in light sensitivity also increases.  相似文献   

4.
Phytochrome-enhanced germination of curled dock (Rumex crispus L.) seeds is further stimulated by pretreatments in solutions of 0.5 to 2 molar methanol and 0.03 to ≥ 0.3 molar 2-propanol during a 2-day 20°C imbibition. Similar pretreatments in 0.1 molar ethanol, acetaldehyde, and n-propanol inhibit phytochrome-enhanced germination. If exposure to ethanol is delayed until 16 hours after a red irradiation, seeds escape the ethanol inhibition indicating a mechanism other than toxicity. The rate of escape from ethanol inhibition roughly parallels the escape from phytochrome control in seeds held in water only, indicating possible ethanol effects on phytochrome. It was found that ethanol pretreatment prevents the far-red absorbing form of phytochrome (Pfr) from acting but does not accelerate dark decay or prevent transformation. Ethanol inhibition may be prevented if ethanol pretreatment is at 10°C instead of 20°C, or may be overcome by transferring ethanol-pretreated seeds to 10°C in water. Similarly, ethanol inhibition can be overcome by a 2-hour 40°C temperature shift concluding the pretreatment. It is proposed that the ethanol causes perturbations at a membrane which prevent Pfr from acting.  相似文献   

5.
Germination of lettuce seeds (Lactuca sativa L. cv Grand Rapids) in the dark was nearly 100% at 20°C but was inhibited at 27°C and higher temperatures (thermoinhibition). A single 5-minute exposure to red light completely overcame the inhibition at temperatures up to 28°C, above which the effectiveness of single light exposures gradually declined to reach a negligible level at 32°C. However, the promotive effect of light could be extended to 34°C by repeated irradiations. At any one temperature, increased frequency of irradiations increased germination percentage, and with each degree increase in temperature, increasingly frequent irradiations were necessary to elicit maximal germination. Loss of the effectiveness of single irradiations with increase in temperature may result either from acceleration of the thermal reversion of the far red-absorbing form of phytochrome or decrease in seed sensitivity toward a given percentage of the far red-absorbing form of phytochrome. Using continuous red light to induce germination, the role of endogenous C2H4 in germination at 32°C was studied. Ethylene evolution from irradiated seeds began to increase 2 hours prior to radicle protrusion, whereas the dark-incubated (nongerminating) seeds produced a low, constant amount of C2H4 throughout the 24 hour incubation period. Inhibition of C2H4 synthesis with 2-aminoethoxyvinyl glycine and/or inhibition of C2H4 action with 2,5-norbornadiene blocked the promotive effect of light. Exogenous C2H4 overcame these blockages. The results showed that participation by endogenous C2H4 was essential for the light-induced relief of thermoinhibition of lettuce seed germination. However, light did not act exclusively via C2H4 since exogenous C2H4 alone in darkness did not promote germination.  相似文献   

6.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

7.
Seeds of giant foxtail (Setaria faberi Herm.) entered secondary dormancy after pretreatment in H2O at 35°C. Pretreatment in 0.1 m ethanol, or several other substances with anesthetic properties, prevented secondary dormancy induction. Pretreatment in 0.5 m ethanol inhibited germination in darkness, but germination could be stimulated by a red irradiation. Germination was initially insensitive to light. Two separate responses are indicated. The first, affected by a variety of substances and low (0.1 m or less) concentrations of ethanol, is related to anesthetic effects and prevention of secondary dormancy. The second, induction of response to red irradiation, is caused by 0.5 m ethanol and some closely related substances. The anesthetic effect is accomplished within the first 8 hours of imbibition while the phytochrome induction effect required treatment for more than 24 hours. Both responses were lost if the 35°C imbibition began in H2O. Involvement of cell membranes is suggested in the prevention of secondary dormancy by anesthetics.  相似文献   

8.
Factors controlling the establishment and removal of secondary dormancy in Chenopodium bonus-henricus L. seeds were investigated. Unchilled seeds required light for germination. A moist-chilling treatment at 4 C for 28 to 30 days removed this primary dormancy. Chilled seeds now germinated in the dark. When chilled seeds were held in the dark in −8.6 bars polyethylene glycol 6000 solution at 15 C or in water at 29 C a secondary dormancy was induced which increased progressively with time as determined by subsequent germination. These seeds now failed to germinate under the condition (darkness) which previously allowed their germination. Continuous light or daily brief red light irradiations during prolonged imbibition in polyethylene glycol solution at 15 C or in water at 29 C prevented the establishment of the secondary dormancy and caused an advancement of subsequent germination. Far red irradiations immediately following red irradiation reestablished the secondary dormancy indicating phytochrome participation in “pregerminative” processes. The growth regulator combination, kinetin + ethephon + gibberellin A4+A7 (GA4+7), and to a relatively lesser extent GA4+7, was effective in preventing the establishment of the secondary dormancy and in advancing the germination or emergence time. Following the establishment of the secondary dormancy by osmotic or high temperature treatments the regulator combination was relatively more active than light or GA4+7 in removing the dormancy. Prolonged dark treatment at 29 C seemed to induce changes that were partially independent of light or GA4+7 control. The data presented here indicate that changes during germination preventing dark treatment determine whether the seed will germinate, show an advancement effect, or will become secondarily dormant. These changes appear to be modulated by light and hormones.  相似文献   

9.
Summary Laboratory-stored seeds ofDiamorpha cymosa (Nutt.) Britton (Crassulaceae) were germinated at monthly intervals starting shortly after maturity in late May and ending at approximately the time germination is completed in the field (November). Seeds were placed at 5, 10, 15, 20, 25, 30, 15/6, 20/10, 30/15 and 35/20°C at a 14-hr photoperiod (12/12 hr thermoperiods at the alternating temperature regimes) and in constant darkness. In June, seeds were almost completely dormant and thus germinated poorly or not at all under all conditions. As seeds aged from late May to November 1. germination at the 14-hr photoperiod increased in rate and total percentage, 2. the maximum germination temperature increased from 15 to 25°C at constant temperatures and from 20/10 to 30/15°C at the alternating temperature regimes and 3. the optimum temperature for germination increased from 15 to 15–20°C at constant temperatures but remained at20/10°C at alternating temperature regimes throughout the study. During the same period germination in constant darkness was negligible at constant and alternating temperature regimes. This pattern of physiological after-ripening apparently is an adaptation to summer-dry,winter-wet habitats such as rock outcrops of southeastern United States.A short period of illumination with white light given after a 12-hr imbibition period in darkness promoted germination in the dark at 25/10°C but not at 15 or 25°C. A short period of illumination given during the imbibition period was much less effective in promoting germination in the dark. Drying up to 7 days did not cause light-stimulated seeds to lose their ability to germinate in darkness. The light requirement for seed germination probably does not play a role in restrictingD. cymosa to its well-lighted habitats on granite and sandstone outcrops.This research was supported by funds from the University of Kentucky Research Foundation and by an NIH Biomedical Sciences Support Grant to the University of Kentucky.  相似文献   

10.
Germination of Potentilla norvegica L. (rough cinquefoil) seeds stimulated by fluorescent irradiations of nearly 24 hours was inhibited by ethylene at <1 microliter per liter. Sensitivity to ethylene inhibition was highest during and immediately after the irradiation. By delaying ethylene treatment until about a day after the light potentiation, seeds escaped the inhibition. Ethylene inhibition may be readily reversed upon release of the gas and reirradiation of the seeds. Imbibition of seeds at 10 or 15°C, or at high temperatures of 35 and 40°C, partially prevented subsequent inhibition by ethylene. Alternating temperatures during germination nearly overcame the inhibition from 1 microliter per liter ethylene, but not higher doses. With brief red-irradiation and alternating temperatures, 0.1 microliter per liter ethylene promoted germination about 2-fold. These data suggest that ethylene may loosely associate on a site required for phytochrome action. The effect of temperature that opposed the inhibition may be to deny the association of ethylene with the site. Loose association is supported by the reversal of inhibition by gas release and increased temperature during germination. A blocking effect was shown by the failure of phytochrome to act when ethylene was present.  相似文献   

11.
Decoated pepper (Capsicum annuum L. cv Early Calwonder) seeds germinated earlier at 25°C, but not at 15°C, compared to coated seeds. The seed coat did not appear to impose a mechanical restriction on pepper seed germination. Scarification of the endosperm material directly in front of the radicle reduced the time to germination at both 15°C and 25°C.

The amount of mechanical resistance imposed by the endosperm on radicle emergence before germination was measured using the Instron Universal Testing Machine. Endosperm strength decreased as imbibition time increased. The puncture force decreased faster when seeds were imbibed at 25°C than at 15°C. The reduction in puncture force corresponded with the ability of pepper seeds to germinate. Most radicle emergence occurred at 15°C and 25°C after the puncture force was reduced to between 0.3 and 0.4 newtons.

Application of gibberellic acid4+7 (100 microliters per liter) resulted in earlier germination at 15°C and 25°C and decreased endosperm strength sooner than in untreated seeds. Similarly, high O2 concentrations had similar effects on germination earliness and endosperm strength decline as did gibberellic acid4+7, but only at 25°C. At 15°C, high O2 concentrations slowed germination and endosperm strength decline.

  相似文献   

12.
Effects of red (600 to 680 nanometers) and far red (700 to 760 nanometers) irradiances on Amaranthus retroflexus L. seeds indicate that synthesis of phytochrome in the red-absorbing form takes place in water-imbibed nongerminating seeds at 35 C. After 96 hours in darkness, conversion of about 0.10% phytochrome to the far red-absorbing form induces 50% germination. Continuous far red radiation at 35 C with an irradiance of 0.4 × 10−10 Einsteins per square centimeter per second caused photoinactivation of phytochrome about equal to the rate of synthesis. Germination of seeds at 35 C, following far red irradiation adequate to establish the photostationary state, is enhanced by holding at 26 C for 16 minutes. Germination is unaffected relative to controls at constant temperature, if the period at 26 C precedes irradiation. The results indicate a quick response to action of phytochrome in a germination process.  相似文献   

13.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

14.
Lettuce (Lactuca sativa L. cv Minetto) seeds were primed in aerated solutions of 1% K3PO4 or water at 15°C in the dark for various periods of time to determine the manner by which seed priming bypasses thermodormancy. Seeds which were not primed did not germinate at 35°C, whereas those which were primed for 20 h in 1% K3PO4 or distilled H2O had up to 86% germination. The rate of water uptake and respiration during priming were similar regardless of soak solution. Cell elongation occurred in both water and 1% K3PO4, 4 to 6 h prior to cell division. Both processes commenced sooner in water than K3PO4. Radicle protrusion (germination) occurred in the priming solution at 21 h in water and 27 h in 1% K3PO4.

Respiration, radicle protrusion and cell division consistently occurred sooner in primed (redried) seeds compared to nonprimed seeds when they were imbibed at 25°C. Cell division and elongation commenced after 10 h imbibition in primed (redried) seeds imbibed at 35°C. Neither process occurred in nonprimed seeds. Respiratory rates were higher in both primed and nonprimed seeds imbibed at 35°C compared to those imbibed at 25°C, although radicle protrusion did not occur in nonprimed seeds which were imbibed at 35°C. It is apparent that cell elongation and division are inhibited during high temperature imbibition in nonprimed lettuce seeds. Seed priming appears to lead to the irreversible initiation of cell elongation, thus overcoming thermodormancy.

  相似文献   

15.
Taylorson RB 《Plant physiology》1975,55(6):1093-1097
A 10 C dark prechilling of johnsongrass [Sorghum halepense (L.) Pers.] seeds, when terminated by a 2-hr, 40 C temperature shift, potentiates about 40% germination at 20 C in darkness. Irradiation of the seeds before, during, and at the end of prechilling with far red light reduces the subsequent germination, although red irradiation after the far red can overcome some of the inhibition. However, either brief red or far red irradiation given immediately after the temperature shift inhibits subsequent germination by one-third to one-half. The results suggest that the far red-absorbing form of phytochrome is a factor in the prechill-induced dark germination and that phytochrome participates in the inhibition of germination by irradiations immediately after the temperature shift.  相似文献   

16.
Sublethal doses of γ-radiation and far red light have some-what analogous, red light reversible, effects on the germination of lettuce seeds (Lactuca sativa L. var. Grand Rapids). However, the mechanism by which γ-radiation retards germination appears to differ from that of far red light. Compared to controls, γ-radiation retarded germination for the first 24 hours; but after 36 or 48 hours of imbibition gemination of treated seeds was higher than that of the controls, whether or not the γ-irradiated seeds received red or far red light. The effects of γ-radiation are more pronounced in seeds containing 15% water at the time of treatment than in those containing only 7% water. The promotive action of red light is operative in the presumed absence of cell division in γ-treated seeds.  相似文献   

17.
Seed of Amaranthus alus L. develop an enhanced sensitivity to the farred absorbing form of phytochrome after prolonged imbibition at temperatures >32°C. The enhanced sensitivity developed at 40°C could be reversed by subsequent treatment at 20°C and similarly reestablished by repeating a 40°C treatment. It is concluded that relative sensitivity to the far-red absorbing form of phytochrome may be readily manipulated in seeds of A. albus.  相似文献   

18.
Phototransformation of phytochrome in lettuce seeds (Lactuca sativa L. var. Grand Rapids) was examined by testing germination responses of seeds irradiated at various temperatures. Temperature variations from 0 to 50 C had no influence on the germination of partially hydrated seeds (about 15% water content) irradiated with either red or far red light prior to imbibition. At −15 C far red light more effectively retarded germination than red light promoted it. No effective phototransformation was detected at −79 C or −196 C.  相似文献   

19.
  • Seed germination of Citrullus colocynthis, as in many other species of Cucurbitaceae, is inhibited by light, particularly at low temperatures. Germination response to light and temperature has been attributed to day length and temperature during seed maturation. This study assessed the effects of these factors on the germination response of C. colocynthis to temperature and light quality.
  • Ripe fruits were collected from natural habitats during December and February and germinated at three temperatures (15/25, 20/30 and 25/35 °C) in five light treatments (dark, white light and Red:Far Red (R:FR) ratios of 0.30, 0.87 and 1.19). Additionally, unripe fruits were also collected from natural habitats and completed their maturation in growth chambers under different day lengths (6, 16 and 24 h of darkness) at 10/20 °C, and in darkness at both 10/20 °C and 25/35 °C. Mature seeds of the different treatments were germinated in the same five light treatments at 15/25 °C.
  • Germination was significantly higher in the dark than that in any light treatment. Seeds matured at higher temperatures (i.e. seeds from the December collection and those matured at 25/35 °C) had significantly higher germination than those matured at lower temperatures (i.e. seeds from the February collection and those matured at 10/20 °C). Dark germination was significantly higher for the December collection than for the February collection. Seeds of the two collections germinated in the dark only at 15/25 °C. However, seeds matured in a growth chamber at 10/20 °C in darkness germinated at 15/25 °C in all light treatments, except for the R:FR ratio 0.30. Seeds of the different treatments failed to germinate in FR‐rich light.
  • This study demonstrates that both temperature and day length during seed maturation play significant roles in the germination response of C. colocynthis. Additionally, the dark requirement for germination is likely beneficial for species with the larger seeds, such as C. colocynthis, which produce bigger seedlings that are able to emerge from deep soils and are competitively superior under dense vegetation and resource‐limited conditions.
  相似文献   

20.
Two successive phases can be distinguished in the development of the responsiveness to light in Oldenlandia corymbosa L. seeds during their incubation in darkness. During phase I, the responsiveness to light increases with time if there is sufficient O2, and the higher the temperature, the faster the increase. This phase is stimulated by gibberellic acid. During the following phase (II), seeds remain responsive to light at 10 or 20°C, but lose their responsiveness at higher temperature (≥30°C). This second phase depends on O2: loss of responsiveness is accelerated at lower O2 concentration. Phase II is only slightly affected by gibberellic acid. The results are discussed in terms of variation of phytochrome and of a reaction along the transduction chain initiated by phototransformation of this pigment, which is finally expressed in germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号