首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glanidium melanopterum Miranda Ribeiro, a typical representative of the subfamily Centromochlinae (Siluriformes: Auchenipteridae), is herein described myologically and compared to other representative species within the group, Glanidium ribeiroi, G. leopardum, Tatia neivai, T. intermedia, T. creutzbergi, Centromochlus heckelii, and C. existimatus. The structure of seven pairs of striated cephalic muscles was compared anatomically: adductor mandibulae, levator arcus palatini, dilatator operculi, adductor arcus palatini, extensor tentaculi, retractor tentaculi, and levator operculi. We observed broad adductor mandibulae muscles in both Glanidium and Tatia, catfishes with depressed heads and smaller eyes. Similarities between muscles were observed: the presence of a large aponeurotic insertion for the levator arcus palatini muscle; an adductor arcus palatini muscle whose origin spread over the orbitosphenoid, pterosphenoid, and parasphenoid; and the extensor tentaculi muscle broadly attached to the autopalatine. There is no retractor tentaculi muscle in either the Glanidium or Tatia species. On the other hand, in Centromochlus, with forms having large eyes and the tallest head, the adductor mandibulae muscles are slim; there is a thin aponeurotic or muscular insertion for the levator arcus palatini muscle; the adductor arcus palatini muscle originates from a single osseous process, forming a keel on the parasphenoid; the extensor tentaculi muscle is loosely attached to the autopalatine, permitting exclusive rotating and sliding movements between this bone and the maxillary. The retractor tentaculi muscle is connected to the maxilla through a single tendon, so that both extensor and retractor tentaculi muscles contribute to a wide array of movements of the maxillary barbels. A discussion on the differences in autopalatine-maxillary movements among the analyzed groups is given.  相似文献   

2.
Several morphological features characterizing Loricariidae or suckermouth-armoured catfishes (Siluriformes, Teleostei) are related to their ability to attach onto substrates with their sucker mouth, and to scrape algae and other food items from these substrates. Suspensorial and opercular muscles are among those muscles usually involved in respiration (and feeding). In several loricariids including the genus Ancistrus, the opercular musculature is decoupled from the respiratory mechanisms. Results show that the adductor arcus palatini is relatively large throughout the whole ontogeny, while the levator arcus palatini is minute. It develops in association with the dilatator operculi, which exhibits substantial growth only in the juvenile and adult stages. The levator and adductor operculi are connected during early ontogeny, and anterior fibres of the latter muscle differentiate into the adductor hyomandibulae, a muscle previously thought to be absent in loricariids. Relative muscle sizes and orientations, as well as articular transformations and the transition from cartilaginous to bony skeletal elements, indicate ontogenetic transformations in the skeleto-muscular system, affecting and steering functionalities.  相似文献   

3.
Summary Quantitative ultrastructural and physiological parameters were investigated in three types of muscle fibres ofPerca fluviatilis: white fibres from the m. levator operculi anterior, pink (intermediate) fibres of the m. hyohyoideus and deep red fibres of the m. levator operculi anterior. Times to peak tension and half relaxation times of isometric twitches increased in the mentioned order. The extent of contact between the T system and the sarcoplasmic reticulum and the relative volume and surface area of the terminal cisternae showed an inverse relation with the time to peak tension of the twitch. The maximal isometric tetanic force per unit cross section area was similar for all three investigated types. The inverse relation between the time to peak tension of the twitch and the relative length of contact between T system and SR is in agreement with data obtained for fast- and slow twitch muscle fibres of the carp,Cyprinus carpio L.Abbreviations LOPA musculus levator operculi anterior - HH musculus hyohyoideus - SR Sarcoplasmic reticulum  相似文献   

4.
Summary In order to describe precisely the fixed action patterns of salmon sexual behavior, we recorded the electromyographic (EMG) activities of trunk and jaw muscles from freely behaving male and female Himé salmon (landlocked sockeye salmon,Oncorhynchus nerka). A series of action patterns (quivering and spawning act in males, digging, covering, prespawning act and spawning act in females, and the swimming and turning movements in both sexes) were characterized by rhythmic activities of the trunk muscles. Each of these activity patterns is quantitatively distinct from the others in such parameters as frequency, bout duration, duty value, intersegmental phase delay, and spatial distribution of rhythmic activities. However, all of these rhythms share a qualitatively homologous pattern with the forward swimming movement: rhythmic activities alternate on both sides of the body (bilateral coupling) and are posteriorly propagated (intersegmental coupling). In addition, a 31 intersegmental phase coupling occurs in the most anterior trunk muscles during the spawning act in some males. Based on these observations, we discussed the biomechanics for these motor patterns (oviposition, ejaculation, body vibration, and mouth opening), and the neural mechanisms for the pattern generation. A possibility was pointed out that the locomotor pattern generator in the spinal cord may be modulated by descending supraspinal signals and recruited to generate such diverse forms of action patterns in sexual behavior.Abbreviations CPG central pattern generator - EMG electromyography - AC adductor mandibulae (cephalic portion) - AM adductor mandibulae (mandibular portion) - DO dilator operculi - GH geniohyoideus - LAP levator arcus palatitni - LPe musculus lateralis profundus (epaxial portion) - LPh musculus lateralis profundus (hypaxial portion) - LS musculus lateralis superficialis - PD protractor dorsalis - PI protractor ischii - RD retractor dorsalis - RI retractor ischii  相似文献   

5.
Functional morphology including the origin, insertion, and innervation of the respiratory muscles in relation to buccal pressure pump and opercular suction pumps in a fresh-water bottom dwelling siluroid fish, Bagarius bagarius have been studied. Histochemical studies were made on the succinic dehydrogenase activity of adductor mandibulae, retractor tentaculi, levator operculi, dilatator operculi, adductor operculi, intermandibularis, interhyoideus, hyohyoideus superior and constrictor branchialis. The intensity of reaction reveals the presence of three types of muscle fibres in some of the respiratory muscles. The muscle containing red muscle fibres are mostly innervated by the branches of the VIIth cranial nerve. The retractor tentaculi consists of superficial white muscle fibres and the interior part is dominated by red muscle fibres. The muscles (adductor operculi, levator operculi, dilatator operculi, interhyoideus, hyohyoideus superior) concerned with the opercular suction pumps are of mixed type and consist of white and red muscle fibres, whereas adductor mandibulae and intermandibularis are made up entirely of white muscle fibres. The adductor muscle bundles of the constrictor branchialis, which are responsible for movement of gill filaments, are dominated by the red muscle fibres. The abductor part, however, is made up entirely of white muscle fibres.  相似文献   

6.
The neotropical loricarioid catfishes include six families, the most species‐rich of which are the Callichthyidae and the Loricariidae. Loricariidae (suckermouth armoured catfishes) have a highly specialized head morphology, including an exceptionally large number of muscles derived from the adductor mandibulae complex and the adductor arcus palatini. Terminology of these muscles varies among the literature, and no data exist on their ontogenetic origin. A detailed examination of the ontogeny of both a callichthyid and a loricariid representative now reveals the identity of the jaw and maxillary barbel musculature, and supports new hypotheses concerning homologies. The adductor mandibulae muscle itself is homologous to the A1‐OST and A3′ of basal catfishes, and the A3′ has given rise to the newly evolved loricariid retractor veli as well. The A2 and A3″ have resulted in the retractor tentaculi of Callichthyidae and the retractor premaxillae of Loricariidae. Thus, these two muscles are shown to be homologous. In Loricariidae, the extensor tentaculi consists of two separate muscles inserting on the autopalatine, and evidence is given on the evolutionary origin of the loricariid levator tentaculi (previously and erroneously known as retractor tentaculi) from the extensor tentaculi, and not the adductor mandibulae complex. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 76–96.  相似文献   

7.
Osteology, myology and motion analysis of the head of the anabantoid fish Helostoma temmincki, a specialized filter feeder, has revealed six functional units: neurocranium, suspensory apparatus, opercular apparatus, hyoid apparatus, branchial apparatus and pectoral girdle. Interactions between the functional units take place through four couplings involved in opening and protruding the jaws. The first coupling is activated in the beginning of the opening cycle by the levator operculi muscle through the opercular apparatus, interoperculomandibular ligament and mandible. The second is activated during feeding by contraction of the sternohyoideus through the hyoid apparatus, interopercular, interoperculomandibular ligament and mandible. The third coupling is active during feeding and “kissing” by contraction of epaxial muscles through mediation of the neurocranium to the jaw apparatus. The fourth coupling is the only one active during air intake and involves contraction of the levator arcus palatini which abducts and rotates the suspensory apparatus forwards, causing the mandible to drop. The retention of isolated ancestral characters during mosaic evolution are explained in terms of the maintenance of couplings which represent functional associations of seemingly remote structures. When natural selection acts on one component of a functional unit or coupling, it essentially acts on all associated elements simultaneously causing character complexes to evolve in common evolutionary trends. It is feasible that functional analysis can separate primary from secondary evolutionary trends.  相似文献   

8.
The adductor mandibulae complex has been a subject of discussion and uncertainties due to a wide range of differentiations that have occurred in teleosts during evolution. In Siluroidei a specific modification of a part of the muscle complex has resulted in the formation of a retractor muscle of the maxillary barbel. The main part of the muscle complex, responsible for the closure of the mouth, has undergone some changes as well, which are at the base of the homology problems encountered by different authors. In this paper the muscles have been studied in three ontogenetic stages of the siluroid Clarias gariepinus (Clariidae); two of them have been described. Based on the ontogenetic evidence and the literature, the following muscles are recognized: 1) the very weakly differentiated adductor mandibulae A2A'3, where only little distinction can be made between the A2 and the A'3 muscle parts, and 2) the adductor mandibulae A“3. Caudally, both muscles are separated from each other by the levator arcus palatini, but are fused together anteriorly, inserting onto the lower jaw. In juvenile C. gariepinus, a differentiation has occurred in the A”3 muscle, thereby forming a distinct pars superficialis and a pars profunda. No A1 nor an Aω muscle is present. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The Polynemidae is a family of primarily marine fishes with eight genera and 42 extant species. Many aspects of their morphology are largely unknown, with few reports about their osteology and barely any information on their myology. This paper describes and illustrates in detail all facial and branchial muscles of representative species of polynemids. Our analysis demonstrates the existence of several remarkable and previously unknown specializations in the polynemid musculature. The aponeurotic and completely independent origin of the pars promalaris of the adductor mandibulae is apparently unique among percomorphs. The differentiation of this section into lateral and medial subsections; the total separation of the promalaris from the retromalaris; the differentiation of the pars primordialis of the levator arcus palatini into external and internal subsections are also uncommon features of polynemids that are shared by sciaenids, thus supporting the hypothesis of a closer relationship between these families.  相似文献   

10.
The Archerfish Toxotes knocks aerial insects into the water by spitting at them. Spitting has been filmed and the excess pressure in the orobranchial cavity is estimated from the muzzle velocity as 7.2 kN m−2. A dissection of the head shows that the adductor arcus palatini and geniohyoideus are most likely to be involved in spitting. From measurements made of these muscles, it is calculated that stresses up to at least 210 kN m−2 must act in them during spitting. Further, it appears from the calculations that these muscles must shorten at rates of 2.4-3.0 muscle lengths sec−1, which seems unlikely at such high stresses. It is possible that a catapult mechanism may be involved.  相似文献   

11.
The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and “adductor mandibulae” is preferred to “levator mandibulae” to align with usage in other gnathostomes. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

12.
Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae.  相似文献   

13.
Developing lampreys were fixed at frequent intervals between the gastrula stage (6 days) and the earliest ammocoete larva (31 days). Expression of lamprey engrailed (en) gene was studied by labeling with a polyclonal antiserum (α Enhb-1 ) raised against mouse en protein. Western blotting of proteins from developing lampreys reveals a major band (40±103 Mr ), which is probably lamprey en protein. Expression domains of en were demonstrated in developing lampreys by immunohistochemistry of whole mounts and histological sections. Expression of en first becomes detectable at the head protrusion stage (11/12 days) in neural tube cells at the mid/hindbrain boundary and soon thereafter in some mesodermal cells of the mandibular arch. These en -expressing cells of the mandibular arch are located in the walls of vesicles of paraxial mesoderm that originate by enterocoely on either side of the pharynx. At the tailbud stage (15 days), en expression is also detectable in mesodermal cells of the anterior lip and in some mesodermal and epidermal cells in the region of the tailbud. By the eye spot stage (18 days), detectable en expression in the mandibular arch becomes limited to cells of the velothyroideus muscles, which drive the power stroke of the recently formed velum. At later stages, while the preceding expression domains fade, en expression begins in some epidermal cells associated with the lip papillae, gill slits, and nostril. We suggest that the velothyroideus muscles of lampreys may be homologous to certain jaw muscles of teleosts–namely, the levator arcus palatini and the dilator operculi, which express en continuously while differentiating from the myogenic mesoderm into identifiable muscle types.  相似文献   

14.
We analyzed the functional morphology and evolution of the long jaws found in several butterflyfishes. We used a conservative reanalysis of an existing morphological dataset to generate a phylogeny that guided our selection of seven short- and long-jawed taxa in which to investigate the functional anatomy of the head and jaws: Chaetodon xanthurus, Prognathodes falcifer (formerly Chaetodon falcifer), Chelmon rostratus, Heniochus acuminatus, Johnrandallia nigrirostris, Forcipiger flavissimus, and F. longirostris. We used manipulations of fresh, preserved, and cleared and stained specimens to develop mechanical diagrams of how the jaws might be protruded or depressed. Species differed based on the number of joints within the suspensorium. We used high-speed video analysis of five of the seven species (C. xanthurus, Chel. rostratus, H. acuminatus, F. flavissimus, and F. longirostris) to test our predictions based on the mechanical diagrams: two suspensorial joints should facilitate purely anteriorly directed protrusion of the lower jaw, one joint should allow less anterior protrusion and result in more depression of the lower jaw, and no joints in the suspensorium should constrain the lower jaw to simple ventral rotation around the jaw joint, as seen in generalized perciform fishes. We found that the longest-jawed species, F. longirostris, was able to protrude its jaws in a predominantly anterior direction and further than any other species. This was achieved with little input from cranial elevation, the principal input for other known lower jaw protruders, and is hypothesized to be facilitated by separate modifications to the sternohyoideus mechanism and to the adductor arcus palatini muscle. In F. longirostris the adductor arcus palatini muscle has fibers oriented anteroposteriorly rather than medial-laterally, as seen in most other perciforms and in the other butterflyfish studied. These fibers are oriented such that they could rotate the ventral portion of the quadrate anteriorly, thus projecting the lower jaw anteriorly. The intermediate species lack modification of the adductor arcus palatini and do not protrude their jaws as far (in the case of F. flavissimus) or in a purely anterior fashion (in the case of Chel. rostratus). The short-jawed species both exhibit only ventral rotation of the lower jaw, despite the fact that H. acuminatus is closely related to Forcipiger.  相似文献   

15.
A complete study of the early ontogeny of the cranial muscles of Corydoras aeneus (Callichthyidae) was undertaken and results were compared with those for the loricariid Ancistrus cf. triradiatus. This comparison reveals a high degree of similarity in the ontogeny of both species' cranial muscles. Both species lack a musculus protractor hyoidei, and the musculus intermandibularis posterior is divided into two different parts that have partly obtained a novel function (serving the lower lip) in A. cf. triradiatus. A similar increase in muscular complexity in this species is found in the dorsal constrictor of the hyoid muscle plate. This constrictor gives rise to the same muscles in both C. aeneus and A. cf. triradiatus, but in A. cf. triradiatus the musculus levator operculi later hypertrophies. In C. aeneus the musculus extensor tentaculi forms a single muscle diverging posteriorly, whereas in A. cf. triradiatus the musculus extensor tentaculi differentiates into two separate bundles. Also, a loricariid neoformation is present called the musculus levator tentaculi.  相似文献   

16.
The order Hexanchiformes currently comprises two families, Chlamydoselachidae (frilled sharks) and Hexanchidae (six‐ and seven‐gill sharks), but its monophyly and relationships with other elasmobranchs are still discussed. Previous studies of hexanchiforms addressing these issues were based mainly on external morphology, teeth, skeletal features, and molecular data, whereas the employment of characters derived from variations in muscles has not been significantly explored. Dissections of four species of Hexanchiformes (including Chlamydoselachus anguineus) are reported here describing the mandibular (musculus adductor mandibulae dorsalis, m. adductor mandibulae ventralis, m. levator labii superioris, m. intermandibularis, and m. constrictor dorsalis) and hyoidean (m. constrictor hyoideus dorsalis and ventralis) arch muscles. Our results provide new data concerning the relationships of hexanchiforms to other elasmobranchs. The m. adductor mandibulae superficialis is described and illustrated in C. anguineus, contradicting previous accounts in which is was considered absent. The anteroposterior orientation of the m. adductor mandibulae superficialis in Chlamydoselachus is similar to the pattern found in hexanchids, squaloids, and hypnosqualeans (including batoids), suggesting it was secondarily lost in Echinorhinus. This muscle therefore provides further support for the inclusion of the Chlamydoselachidae and Hexanchidae in the Squalomorphi, and not basal to all other elasmobranchs or nested within an all‐shark collective, as has been previously proposed. However, the m. adductor mandibulae superficialis originating at the jaw joint and with an aponeurotic insertion in hexanchids, squaliforms, and hypnosqualeans, may be a separate derived feature uniting these taxa. The insertion of the m. constrictor dorsalis is restricted to the postorbital articulation in hexanchids, whereas it extends farther anteriorly in C. anguineus. The insertion of the m. constrictor hyoideus dorsalis solely on the palatoquadrate is found exclusively in the Hexanchidae. We conclude that no specific pattern of mandibular or hyoid arch muscles support the monophyly of hexanchiforms (i.e., including Chlamydoselachus). J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Averages of electromyogram (EMG) signals emanating from the levator arcus palatini , a small muscle involved in the operation of the operculum in rainbow trout, Salmo gairdneri , were analysed in terms of their relationship to the fish's oxygen consumption rates under various activity levels. The EMG signals were detected and transmitted with a radio-telemetry system. The EMG values showed a good correlation with corresponding oxygen consumption rates for fish under forced-swimming conditions but not when the fish was swimming spontaneously; this is attributed to an ability to regulate oxygen uptake at the gill surfaces by other means than increasing the ventilation volume, including alterations in the gill blood flow dynamics (e.g. secondary lamellar recruitment), and changes in the cardiac output. Under forced-swim conditions, where the oxygen demands by the respiring muscles were higher, increased ventilation volume, as indicated by increased opercular muscle activity, was directly related to swimming speed and oxygen uptake.  相似文献   

18.
We compare the cranial morphology of four fish species with an increasing anguilliformism in the following order: Clarias gariepinus, Clariallabes melas, Gymnallabes typus, and Channallabes apus. The main anatomical‐morphological disparities are the stepwise reduction of the skull roof along with the relative enlargement of the external jaw muscles, which occurred in each of them. Gymnallabes typus and C. apus lack a bony protection to cover the jaw muscles. The neurocranial bones of C. gariepinus, however, form a closed, broad roof, whereas the width of the neurocranium in C. melas is intermediate. Several features of the clariid heads, such as the size of the mouth and the bands of small teeth, may be regarded as adaptations for manipulating large food particles, which are even more pronounced in anguilliform clariids. The jaw musculature of G. typus is hypertrophied and attached on a higher coronoid process of the lower jaw, causing a larger adductive force. The hyomandibula interdigitates more strongly with the neurocranium and its dentition with longer teeth is posteriorly extended, closer to the lower jaw articulation. The anguilliform clariids also have their cranial muscles modified to enable a wider gape. The adductor mandibulae and the levator operculi extend more posteriorly, and the anterior attachment site of the protractor hyoidei dorsalis shifts toward the sagittal plane of the head. A phylogenetic analysis of the Clariidae, which is in progress, could check the validity of Boulenger's hypothesis that predecessors of the primitive fishes, such as Heterobranchus and most Clarias, would have evolved into progressively anguilliform clariids. J. Morphol. 240:169–194, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
The feeding mechanism of Epibulus insidiator is unique among fishes, exhibiting the highest degree of jaw protrusion ever described (65% of head length). The functional morphology of the jaw mechanism in Epibulus is analyzed as a case study in the evolution of novel functional systems. The feeding mechanism appears to be driven by unspecialized muscle activity patterns and input forces, that combine with drastically changed bone and ligament morphology to produce extreme jaw protrusion. The primary derived osteological features are the form of the quadrate, interopercle, and elongate premaxilla and lower jaw. Epibulus has a unique vomero-interopercular ligament and enlarged interoperculo-mandibular and premaxilla-maxilla ligaments. The structures of the opercle, maxilla, and much of the neurocranium retain a primitive labrid condition. Many cranial muscles in Epibulus also retain a primitive structural condition, including the levator operculi, expaxialis, sternohyoideus, and adductor mandibulae. The generalized perciform suction feeding pattern of simultaneous peak cranial elevation, gape, and jaw protrusion followed by hyoid depression is retained in Epibulus. Electromyography and high-speed cinematography indicate that patterns of muscle activity during feeding and the kinematic movements of opercular rotation and cranial elevation produce a primitive pattern of force and motion input. Extreme jaw protrusion is produced from this primitive input pattern by several derived kinematic patterns of modified bones and ligaments. The interopercle, quadrate, and maxilla rotate through angles of about 100 degrees, pushing the lower jaw into a protruded position. Analysis of primitive and derived characters at multiple levels of structural and functional organization allows conclusions about the level of design at which change has occurred to produce functional novelties.  相似文献   

20.
Siluroids are characterized by the presence of a palatine-maxillary mechanism, which enables a controlled mobility of the maxillary barbels. In Clarias gariepinus , the ontogeny of this mechanism is studied and described as well as those muscles related to the maxillary barbel. Two muscles are distinguished: (1) retractor tentaculi , connecting the maxilla to the suspensorium, and (2) extensor tentaculi , running from the ventro-lateral face of the skull to the posterior half of the palatine. These typical catfish muscles are derived from muscles that are present in generalized teleost fishes. The retractor muscle is believed to be derived from the A3 muscle of the adductor mandibulae complex. The extensor muscle is formed from the anterior fibres of the adductor arcus palatini. The palatine is rod-like in C. gariepinus and articulates with the orbitonasal lamina in larval specimens and with its ossification, the lateral ethmoid, in juvenile and adult specimens. The articulation occurs via a long cartilaginous strip on the dorsal face of the autopalatine, thereby enabling both a rotation and a restricted sliding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号