首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White is a widespread coat color among domestic pig breeds and is controlled by an autosomal dominant gene I. The segregation of this gene was analyzed in a reference pedigree for gene mapping developed by crossing the European wild pig and a Large White domestic breed. The gene for dominant white color was shown to be closely linked to the genes for albumin (ALB) and platelet-derived growth factor receptor alpha (PDGFRA) on chromosome 8. An unexpected phenotype with patches of colored and white coat was observed among the F1 and F2 animals. The segregation data indicated that the phenotype was controlled by a third allele, denoted patch (Ip), most likely transmitted by one of the Large White founder animals. It is shown that the ALB, PDGFRA, I linkage group shares homologies with parts of mouse chromosome 5, human chromosome 4, and horse linkage group II, all of which contain dominant genes for white or white spotting. Candidate genes for the dominant white and patch mutations in the pig are proposed on the basis on these linkage homologies and the recent molecular definition of the dominant white spotting (W) and patch (Ph) mutations in the mouse.  相似文献   

2.
The dorsal fur in yellow F1 mice (F1-Ay) between C3H/HeJ and C57BL/6J-Ay is darker than that in C57BL/6J-Ay. Moreover, yellow F2 mice (F2-Ay) exhibit a wide spectrum of coat color phenotypes in terms of lightness and darkness. Quantitative trait locus (QTL) analysis on F2-Ay identified three significant modifier loci that accounted for darkening of the coat color on chromosomes 1 (Dmyaq1 and Dmyaq2) and 15 (Dmyaq3), and the C3H/HeJ allele at these loci increased the darkness. Because agouti F2 mice (F2-A) also exhibited a spectrum of coat color phenotypes, the question of whether these QTLs had any effects on F2-A was examined. Dmyaq1 and Dmyaq2 were shown to increase the darkness in F2-A, whereas Dmyaq3 did not. The results showed that Dmyaq1-Dmyaq3 were parts of determinants responsible for the sable (darker modification of yellow) coat color phenotype, and that Dmyaq1 and Dmyaq2 were parts of determinants responsible for the umbrous (darker modification of agouti) coat color phenotype. It is, thus, demonstrated that both the sable and the umbrous phenotypes resulted from multigenic contributions, and that they shared genetic bases, as had been implied for several decades.  相似文献   

3.
The proportion of unpigmented coat on the trunk was determined from photographs of 38 German Simmental and 627 German Holstein bulls distributed over three generations. All 665 animals were members of 18 Holstein and 3 Simmental half-sib families. A Bayesian estimation of heritability yielded a posterior mean of 0.88 and a standard error of 0.08. A quantitative trait loci (QTL) scan over all chromosomes covered by 229 microsatellite marker loci (2926 cM) was performed by fitting a multiple marker regression model to 625 observations from the youngest generation in 18 families. On chromosome 6 a QTL for the proportion of white coat with large effects (experiment-wise error probability < .0001) was found and a less important one on chromosome 3 (chromosome-wise error probability < .009). Chromosome 6 is known to harbor the KIT locus (receptor tyrosinase kinase), which is associated with various depigmentation phenotypes in mice, humans, and pigs. Similarity of phenotypic KIT effects in other species and synteny with the reported QTL suggest that KIT is a serious candidate gene for the degree of spotting in cattle. The results are also discussed with respect to resistance to solar radiation, heat stress, and photosensitization.  相似文献   

4.
The molecular background of many loci affecting coat colour inheritance in cattle is still incompletely characterized, although it is known that coat colour results from the joint effects of several loci, e.g. agouti, extension and dilution. Dilution alleles are responsible for a dilution effect on the original coat colour of an individual, which is determined by the agouti and extension loci. Different loci affecting dilution of pigment are suggested in Charolais (Dc) and Simmental (Ds). To enable chromosomal mapping of the Dc mutation, 133 animals from an F2 full-sib resource population generated from a cross of Charolais and German Holstein were scored for the coat colour dilution phenotype. Linkage analysis covering all autosomes revealed a significant linkage of the dilution phenotype with microsatellite markers on bovine chromosome 5. No recombination was observed between marker ETH10 and the Dc locus. Positional and functional information identified the bovine silver homolog (SILV) gene as a candidate for the Dc mutation. Results from comparative sequencing of the SILV gene in individuals with different dilution coat colour phenotypes confirmed the presence of a c.64G>A non-synonymous mutation, which had previously been identified in the Charolais breed. The alleles at this locus were associated with coat colour dilution in this study. However, further investigation of colour inheritance within the F2 resource population indicated that a single diallelic mutation in the SILV gene cannot explain the total observed variation of coat colour dilution.  相似文献   

5.
6.
The susceptibility to collagen-induced arthritis in the highly susceptible DBA/1 mouse has earlier been shown to be partly controlled by the MHC class II gene Aq. To identify susceptibility loci outside of MHC, we have made crosses between DBA/1 and the less susceptible B10.Q strain, both expressing the MHC class II gene Aq. Analysis of 224 F2 intercross mice with 170 microsatellite markers in a genome-wide scan suggested 4 quantitative trait loci controlling arthritis susceptibility located on chromosomes 6, 7, 8, and 10. The locus on chromosome 6 (Cia6), which was associated with arthritis onset, yielded a logarithm of odds score of 4.7 in the F2 intercross experiment and was reproduced in serial backcross experiments. Surprisingly, the DBA/1 allele had a recessive effect leading to a delay in arthritis onset. The suggestive loci on chromosomes 7 and 10 were associated with arthritis severity rather than onset, and another suggestive locus on chromosome 8 was most closely associated with arthritis incidence. The loci on chromosomes 7, 8, and 10 all appeared to contain disease-promoting alleles derived from the DBA/1 strain. Interestingly, most of the identified loci were situated in chromosomal regions that are homologous to regions in the rat genome containing susceptibility genes for arthritis; the mouse Cia6 locus is homologous with the rat Cia3, Pia5, Pia2, and Aia3; the locus on chromosome 7 (Cia7) is homologous with the rat Cia2; and the locus on chromosome 10 (Cia8) is homologous with the rat Cia4.  相似文献   

7.
The B10.RIII mouse strain (H-2(r)) develops chronic experimental autoimmune encephalomyelitis (EAE) upon immunization with the myelin basic protein 89-101 peptide. EAE was induced and studied in a backcross between B10.RIII and the EAE-resistant RIIIS/J strain (H-2(r)), and a complete genome scan with microsatellite markers was performed. Five loci were significantly linked to different traits and clinical subtypes of EAE on chromosomes 1, 5, 11, 15, and 16, three of the loci having sex specificity. The quantitative trait locus on chromosome 15 partly overlapped with the Eae2 locus, previously identified in crosses between the B10.RIII and RIIIS/J mouse strains. The loci on chromosomes 11 and 16 overlapped with Eae loci identified in other mouse crosses. By analyzing the backcross animals for lymphocyte phenotypes, the proportion of B and T cells in addition to the levels of CD4(+)CD8(-) and CD4(-)CD8(+) T cells and the CD4(+)/CD8(+) ratio in spleen were linked to different loci on chromosomes 1, 2, 3, 5, 6, 11, and 15. On chromosome 16, we found significant linkage to spleen cell proliferation. Several linkages overlapped with the quantitative trait loci for disease phenotypes. The identification of subphenotypes that are linked to the same loci as disease traits could be most useful in the search for candidate genes and biological pathways involved in the pathological process.  相似文献   

8.
Genetic complementation in female (BXSB x NZW)F2 mice   总被引:1,自引:0,他引:1  
F(1) hybrids among New Zealand Black (NZB), New Zealand White (NZW), and BXSB lupus-prone strains develop accelerated autoimmunity in both sexes regardless of the specific combination. To identify BXSB susceptibility loci in the absence of the Y chromosome accelerator of autoimmunity (Yaa) and to study the genetics of this complementation, genome-wide quantitative trait locus (QTL) mapping was performed on female (BXSB x NZW)F(2) mice. Six QTL were identified on chromosomes 1, 4, 5, 6, 7, and 17. Survival mapped to chromosomes 5 and 17, anti-chromatin Ab to chromosomes 4 and 17, glomerulonephritis to chromosomes 6 and 17, and splenomegaly to chromosomes 1, 7, and 17. QTL on chromosomes 4 and 6 were new and designated as Lxw1 and -2, respectively. Two non-MHC QTL (chromosomes 1 and 4) were inherited from the BXSB and the rest were NZW-derived, including two similar to previously defined loci. Only two of 11 previously defined non-MHC BXSB QTL using male (Yaa(+)) crosses were implicated, suggesting that some male-defined BXSB QTL may require coexpression of the Yaa. Findings from this and other studies indicate that BXSB and NZB backgrounds contribute completely different sets of genes to complement NZW mice. Identification of susceptibility genes and complementing genes in several lupus-prone strain combinations will be important for defining the epistatic effects and background influences on the heterogeneous genetic factors responsible for lupus induction.  相似文献   

9.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in neonatal and postweaning pigs. F41 is one of ETEC fimbriae that adhere to the small intestinal epithelium and lead to development of diarrhoea. The genetic architecture of susceptibility to ETEC F41 remains elusive in pigs. In this study, we determined the in vitro adhesion phenotypes of ETEC F41 in a total of 835 F2 animals from a White Duroc × Erhualian intercross, and performed a genome scan using both F2 and half-sib analyses with 183 microsatellite markers to detect quantitative trait loci (QTL) for porcine susceptibility to ETEC F41. The two analyses consistently revealed a 1% genome-wide significant QTL on pig chromosome 4. Moreover, we determined F41 adhesion phenotypes in 14 purebred Erhualian and 14 White Duroc pigs. The results showed that both the founder breeds are segregating for the F41 adhesion phenotype, while less percentage of Erhualian pigs were adhesive to ETEC F41 compared to White Duroc pigs.  相似文献   

10.
We used a random coefficient regression (RCR) model to estimate growth parameters for the time series of observed serum glucose levels in the Replicate 1 of the Genetic Analysis Workshop 13 simulated data. For comparison, a two time-point interval was also selected and the slope between these two observations was calculated. This process yielded four phenotypes: the RCR growth phenotype, a two time-point slope phenotype, and Time 1 and Time 2 serum glucose level phenotypes. These four phenotypes were used for linkage analyses on simulated chromosomes 5, 7, 9, and 21, those chromosomes that contained loci affecting the growth course for serum glucose levels. The linkage analysis of the RCR-derived phenotype showed overwhelming evidence for linkage at one locus (LOD 65.78 on chromosome 5), while showing elevated but nonsignificant LOD scores for two other loci (LOD 1.25 on chromosome 7, LOD 1.10 on chromosome 9), and no evidence of linkage for the final locus. The two time-point slope phenotype showed evidence for linkage at one locus (LOD 4.16 on chromosome 5) but no evidence for linkage at any of the other loci. A parallel cross-sectional approach, using as input phenotypes the endpoints of the two-point slope phenotype, gave strong linkage results for the major locus on chromosome 5 (maximal LOD scores of 17.90 and 27.24 for Time 1 and Time 2, respectively) while showing elevated but nonsignificant linkage results on chromosome 7 (maximal LOD scores of 1.71 and 1.48) and no evidence for linkage at the two remaining loci. The RCR growth parameter showed more power to detect linkage to the major locus than either the cross-sectional or two-point slope approach, but the cross-sectional approach gave a higher maximal LOD score for one of the minor loci.  相似文献   

11.
12.
Y S Oh  T Tomita 《Jikken dobutsu》1987,36(1):73-77
Linkage tests on the faded gene were carried out with some coat color and biochemical markers, It was shown that the faded locus was not closely linked to the following loci: Idh-1 (chromosome 1), a (2), Car 2 (3), Mup-1 (4), Pgm-1 (5), Hbb (7), Gpi-1 (7), Es-1 (8), Trf (9), Es-3 (11), s (14), Sod-1 (16) and Ce-2 (17). The mutant locus showed linkage with Ggc on chromosome 6.  相似文献   

13.
White spotting is the absence of melanocytes (pigment cells) from part or all of the locations in the body where they are normally found. At least in the case of the W (kit) locus, white spotting has been attributed to apoptosis. In addition to the death of melanoblasts, white spotting might result from their failure to migrate to their normal locations. These developmental failures are known to be melanocyte-specific in some instances and environment-specific in others. The environment is defined as the tissues surrounding the melanoblast. Patterns of white spotting were examined on mice mutant at the piebald (s), patch (Ph), dominant spotting (W(J2)) rumpwhite (Rw) or belted (bt) loci. The dominant spotting locus has been cloned and found to encode KIT; it has been suggested that Patch encodes the linked alpha-PDGF receptor. Piebald encodes the endothelin beta receptor. In each case, the phenotypes expressed when the allele was backcrossed onto one inbred strain C57BL/6 (B6), were compared with phenotypes expressed when the allele was backcrossed onto a different inbred strain, JU/CtLm (JU). The literature documents genetic loci that influence the extent of the white spotted area; we herein demonstrate that genetic loci also influence the location where the white spot (absence of melanocytes) will occur over the body of the mouse. Spotting occurs in a more anterior direction on JU mice that are piebald, patch or dominant-spotted compared with similar B6 mice. The relationship is reversed in rumpwhite mice, where white spotting is more anterior in the C57BL/6 mice than in the JU mice. The spotting pattern of belted mice was not modified by the background genome. Thus, the Mendelian observations indicate that several loci, which differ in JU compared with B6 mice, influence the size and the location of white spots on the mouse.  相似文献   

14.
Many of inflammatory diseases, including inflammatory arthritis, are multifactorial bases. The Ali18 semidominant mutation induced by N-ethyl-N-nitrosourea in the C3HeB/FeJ (C3H) genome causes spontaneous inflammation of peripheral limbs and elevated immunoglobulin E (IgE) levels in mice. Although the Ali18 locus was mapped to a single locus on chromosome 4, the arthritic phenotype of Ali18/+ mice was completely suppressed in F1 hybrid genetic backgrounds. To determine the chromosomal locations of the modifier loci affecting the severity of arthritis, an autosomal genome scan of 22 affected Ali18/+ F2 mice was conducted using C57BL/6J as a partner strain. Interestingly, regions on chromosomes 1 and 3 in C3H showed significant genetic interactions. Moreover, 174 N2 (backcross to Ali18/Ali18) and 267 F2 animals were used for measurement of arthritis scores and plasma IgE levels, and also for genotyping with 153 genome-wide single nucleotide polymorphism (SNP) markers. In N2 populations, two significant trait loci for arthritis scores on chromosomes 1 and 15 were detected. Although no significant scores were detected in F2 mice besides chromosome 4, a suggestive score was detected on chromosome 3. In addition, a two-dimensional genome scan using F2 identified five suggestive scores of chromosomal combinations, chromosomes 1 × 10, 2 × 6, 3 × 4, 4 × 9, and 6 × 15. No significant trait loci affecting IgE levels were detected in both N2 and F2 populations. Identification of the Ali18 modifier genes by further detailed analyses such as congenic strains and expression profiling may dissect molecular complexity in inflammatory diseases.  相似文献   

15.
To evaluate if loci responsible for coat color phenotypes contribute to behavioral characteristics, we specified novel gene loci associated with social exploratory behavior and examined the effects of the frequency of each allele at distinct loci on behavioral expression. We used the F2 generation, which arose from the mating of F1 mice obtained by interbreeding DBA/2 and ICR mice. Phenotypic analysis indicated that the agouti and albino loci affect behavioral traits. A genotype-based analysis revealed that novel exploratory activity was suppressed in a manner dependent on the frequency of the dominant wild-type allele at the agouti, but not albino, locus. The allele-dependent suppression was restricted to colored mice and was not seen in albino mice. The present results suggest that the agouti locus contributes to a particular behavioral trait in the presence of a wild-type allele at the albino locus, which encodes a structural gene for tyrosinase.  相似文献   

16.
The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus)   总被引:2,自引:0,他引:2  
Genetic studies demonstrated three loci controlling coat colors in the Mongolian gerbil. F1 hybrids of white gerbils with red eyes and agouti gerbils with wild coat color had the agouti coat color. The segregating ratio of agouti and white in the F2 generation was 3:1. In the backcross (BC) generation (white x F1), the ratio of the agouti and white coat colors was 1:1. Next, inheritance of the agouti coat color was investigated. Matings between agouti and non-agouti (black) gerbils produced only agouti gerbils. In the F2 generation, the ratio of agouti to non-agouti (black) was 3:1. There was no distortion in the sex ratios within each coat color in the F1, F2 and BC generations. This indicated that the white coat color of gerbils is governed by an autosomal recessive gene which should be named the c allele of the c (albino) locus controlling pigmentation, and the agouti coat color is controlled by an autosomal dominant gene which might be named the A allele of the A (agouti) locus controlling pigmentation patterns in the hair. The occurrence of the black gerbil demonstrated clearly the existence of the b (brown) locus, and it clearly indicated that the coat colors of gerbils can basically be explained by a, b, and c loci as in mice and rats.  相似文献   

17.
N F Parnell  J T Streelman 《Heredity》2013,110(3):239-246
Sex-determining systems may evolve rapidly and contribute to lineage diversification. In fact, recent work has suggested an integral role of sex chromosome evolution in models of speciation. We use quantitative trait loci analysis of restriction site-associated DNA -tag single nucleotide polymorphisms to identify multiple loci responsible for sex determination and reproductively adaptive color phenotypes in Lake Malawi cichlids. We detect a complex epistatic sex system consisting of a major female heterogametic ZW locus on chromosome 5, two separate male heterogametic XY loci on chromosome 7, and two additional interacting loci on chromosomes 3 and 20. Our data support the known chromosomal linkage between orange blotch color and ZW, as well as novel genetic associations between male blue nuptial color and two sex determining regions (an XY and ZW locus). These results provide further empirical evidence for a complex antagonistic sex–color system in this species flock and suggest a possible role for, and effect of, polygenic sex-determining systems in rapid evolutionary diversification.  相似文献   

18.
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 619 F(2) animals and their parents were typed for molecular markers covering the entire porcine genome. Associations were studied between these markers and two fatness traits: intramuscular fat content and backfat thickness. Association analyses were performed using interval mapping by regression under two genetic models: (1) an outbred line-cross model where the founder lines were assumed to be fixed for different QTL alleles; and (2) a half-sib model where a unique allele substitution effect was fitted within each of the 19 half-sib families. Both approaches revealed for backfat thickness a highly significant QTL on chromosome 7 and suggestive evidence for a QTL at chromosome 2. Furthermore, suggestive QTL affecting backfat thickness were detected on chromosomes 1 and 6 under the line-cross model. For intramuscular fat content the line-cross approach showed suggestive evidence for QTL on chromosomes 2, 4, and 6, whereas the half-sib analysis showed suggestive linkage for chromosomes 4 and 7. The nature of the QTL effects and assumptions underlying both models could explain discrepancies between the findings under the two models. It is concluded that both approaches can complement each other in the analysis of data from outbred line crosses.  相似文献   

19.
Mastitis is the most frequent and costly disease in dairy production and solutions leading to a reduction in the incidence of mastitis are highly demanded. Here a genome-wide association study was performed to identify polymorphisms affecting susceptibility to mastitis. Genotypes for 17 349 SNPs distributed across the 29 bovine autosomal chromosomes from a total of 2589 sires with 1 389 776 daughters with records on clinical mastitis were included in the analysis. Records of occurrence of clinical mastitis were divided into seven time periods in the first three lactations in order to identify quantitative trait loci affecting mastitis susceptibility in particular phases of lactation. The most convincing results from the association mapping were followed up and validated by a combined linkage disequilibrium and linkage analysis. The study revealed quantitative trait loci affecting occurrence of clinical mastitis in the periparturient period on chromosomes 2, 6 and 20 and a quantitative trait locus affecting occurrence of clinical mastitis in late lactation on chromosome 14. None of the quantitative trait loci for clinical mastitis detected in the study seemed to affect lactation average of somatic cell score. The SNPs highly associated with clinical mastitis lie near both the gene encoding interleukin 8 on chromosome 6 and the genes encoding the two interleukin 8 receptors on chromosome 2.  相似文献   

20.
To identify the genes controlling plasma concentrations of triglycerides (TGs), FFAs, and glucose, we carried out a quantitative trait loci (QTL) analysis of the closely related mouse strains New Zealand Black (NZB/B1NJ) and New Zealand White (NZW/LacJ), which share 63% of their genomes. The NZB x NZW F(2) progeny were genotyped and phenotyped to detect QTL, and then comparative genomics, bioinformatics, and sequencing were used to narrow the QTL and reduce the number of candidate genes. Triglyceride concentrations were linked to loci on chromosomes (Chr) 4, 7, 8, 10, and 18. FFA concentrations were affected by a significant locus on Chr 4, a suggestive locus on Chr 16, and two interacting loci on Chr 2 and 15. Plasma glucose concentrations were affected by QTL on Chr 2, 4, 7, 8, 10, 15, 17, and 18. Comparative genomics narrowed the QTL by 31% to 86%; haplotype analysis was usually able to further narrow it by 80%. We suggest several candidate genes: Gba2 on Chr 4, Irs2 on Chr 8, and Ppargc1b on Chr 18 for TG; A2bp1 on Chr 16 for FFA; and G6pc2 on Chr 2 and Timp3 on Chr 10 for glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号