首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Up to 550 ppm (550 micrograms/ml) of nisin in combination with 60 ppm (60 micrograms/ml) of nitrite failed to prevent outgrowth of Clostridium botulinum spores in pork slurries adjusted to pH 5.8. Reducing the pH enhanced nisin activity. Proteolytic and nonproteolytic type B spores were equally resistant to nisin.  相似文献   

2.
The presence of psychrotrophic enterotoxigenic Bacillus cereus in ready-to-serve meats and meat products that have not been subjected to sterilization treatment is a public health concern. A study was undertaken to determine the survival, growth, and diarrheal enterotoxin production characteristics of four strains of psychrotrophic B. cereus in brain heart infusion (BHI) broth and beef gravy as affected by temperature and supplementation with nisin. A portion of unheated vegetative cells from 24-h BHI broth cultures was sensitive to nisin as evidenced by an inability to form colonies on BHI agar containing 10 micrograms of nisin/ml. Heat-stressed cells exhibited increased sensitivity to nisin. At concentrations as low as 1 microgram/ml, nisin was lethal to B. cereus, the effect being more pronounced in BHI broth than in beef gravy. The inhibitory effect of nisin (1 microgram/ml) was greater on vegetative cells than on spores inoculated into beef gravy and was more pronounced at 8 degrees C than at 15 degrees C. Nisin, at a concentration of 5 or 50 micrograms/ml, inhibited growth in gravy inoculated with vegetative cells and stored at 8 or 15 degrees C, respectively, for 14 days. Growth of vegetative cells and spores of B. cereus after an initial period of inhibition is attributed to loss of activity of nisin. One of two test strains produced diarrheal enterotoxin in gravy stored at 8 or 15 degrees C within 9 or 3 days, respectively. Enterotoxin production was inhibited in gravy supplemented with 1 microgram of nisin/ml and stored at 8 degrees C for 14 days; 5 micrograms of nisin/ml was required for inhibition at 15 degrees C. Enterotoxin was not detected in gravy in which less than 5.85 log10 CFU of B. cereus/ml had grown. Results indicate that as little as 1 microgram of nisin/ml may be effective in inhibiting or retarding growth of and diarrheal enterotoxin production by vegetative cells and spores of psychrotrophic B. cereus in beef gravy at 8 degrees C, a temperature exceeding that recommended for storage or for most unpasteurized, ready-to-serve meat products.  相似文献   

3.
The basal proton motive force (PMF) levels and the influence of the bacteriocin nisin on the PMF were determined in Listeria monocytogenes Scott A. In the absence of nisin, the interconversion of the pH gradient (Z delta pH) and the membrane potential (delta psi) led to the maintenance of a fairly constant PMF at -160 mV over the external pH range 5.5 to 7.0. The addition of nisin at concentrations of greater than or equal to 5 micrograms/ml completely dissipated PMF in cells at external pH values of 5.5 and 7.0. With 1 microgram of nisin per ml, delta pH was completely dissipated but delta psi decreased only slightly. The action of nisin on PMF in L. monocytogenes Scott A was both time and concentration dependent. Valinomycin depleted only delta pH, whereas nigericin and carbonyl cyanide m-chlorophenylhydrazone depleted only delta psi, under conditions in which nisin depleted both. Four other L. monocytogenes strains had basal PMF parameters similar to those of strain Scott A. Nisin (2.5 micrograms/ml) also completely dissipated PMF in these strains.  相似文献   

4.
The effects of nisin and monolaurin, alone and in combination, were investigated on Bacillus licheniformis spores in milk at 37 degrees C. In the absence of inhibitors, germinated spores developed into growing vegetative cells and started sporulation at the end of the exponential phase. In the presence of nisin (25 IU ml-1), spore outgrowth was inhibited (4 log10 reduction at 10 h). Regrowth appeared between 10 and 24 h and reached a high population level (1.25 x 10(8) cfu ml-1) after 7 d. Monolaurin (250 micrograms ml-1) had a bacteriostatic effect during the first 10 h but thereafter, regrowth occurred slowly with a population level after 7 d (4 x 10(5) cfu ml-1) lower than that of nisin. Different combined effects of nisin (between 0 and 42 IU ml-1), monolaurin (ranging from 0 to 300 micrograms ml-1), pH values (between 5.0 and 7.0) and spore loads (10(3), 10(4), 10(5) spores ml-1) were investigated using a Doehlert matrix in order to study the main effects of these factors and the different interactions. Results were analysed using the Response Surface Methodology (RSM) and indicated that nisin and monolaurin had no action on spores before germination; only pH values had a significant effect (P < or = 0.001), i.e. spore count decreased as the pH value increased in relation to germination. Sublethal concentrations of nisin (30 IU ml-1) and monolaurin (100 micrograms ml-1) in combination acted synergistically on outgrown spores and vegetative cells, showing total inhibition at pH 6.0, without regrowth, within 7 d at 37 degrees C.  相似文献   

5.
M K Rayman  B Aris    A Hurst 《Applied microbiology》1981,41(2):375-380
Nisin at 75 ppm (75 microgram/g) was superior to 150 ppm of nitrite in inhibiting outgrowth of Clostridium sporogenes PA3679 spores in meat slurries, which had been heated to simulate the process used for cooked ham. The inhibitory activity of nisin decreased as the spore load or pH of the slurries increased. Unlike nitrite, inhibition by nisin was unaffected by high levels of iron either as a constituent of meats or when added as an iron salt. In slurries treated with 75 ppm of nisin, refrigerated storage for 56 days resulted in depletion of nisin to a level low enough to allow outgrowth within 3 to 10 days if the slurries were subsequently abused at 35 degrees C. In contrast, a combination of 40 ppm of nitrite and either 75 or 100 ppm of nisin almost completely inhibited outgrowth in these slurries. The nisin-nitrite combination appeared to have a synergistic effect, and the low concentration of nitrite was sufficient to preserve the color in meats similar to that of products cured with 150 ppm of nitrite.  相似文献   

6.
The effect of salt (NaCl) on the efficacy of nisin in preventing outgrowth of Bacillus licheniformis spores was determined in Plate Count Agar (PCA). An equivalent liquid medium was used for heat activation. Nisin and salt were added to the heat-activation medium, the PCA, or both. The spores were extremely sensitive to nisin; outgrowth were completely inhibited in salt-free media when 10 iu/ml of nisin was present in both the heat-activation and the growth media or when 100 iu/ml nisin was present in either the heat-activation and the growth medium. In media supplemented with 1% salt, outgrowth occurred from 1% of spores exposed to 100 iu/ml nisin in either the heat-activation or the growth medium. A 3% salt supplement was necessary before detectable outgrowth occurred when both the heat-activation and the growth media contained 100 iu/ml nisin. Salt appears to antagonize the sporicidal action of nisin by interfering with nisin adsorption onto the spore.  相似文献   

7.
The milk supply is considered a primary route for a bioterrorism attack with Bacillus anthracis spores because typical high-temperature short-time (HTST) pasteurization conditions cannot inactivate spores. In the event of intentional contamination, an effective method to inactivate the spores in milk under HTST processing conditions is needed. This study was undertaken to identify combinations and concentrations of biocides that can inactivate B. anthracis spores at temperatures in the HTST range in less than 1 min. Hydrogen peroxide (HP), sodium hypochlorite (SH), and peroxyacetic acid (PA) were evaluated for their efficacy in inactivating spores of strains 7702, ANR-1, and 9131 in milk at 72, 80, and 85 degrees C using a sealed capillary tube technique. Strains ANR-1 and 9131 were more resistant to all of the biocide treatments than strain 7702. Addition of 1,260 ppm SH to milk reduced the number of viable spores of each strain by 6 log CFU/ml in less than 90 and 60 s at 72 and 80 degrees C, respectively. After neutralization, 1,260 ppm SH reduced the time necessary to inactivate 6 log CFU/ml (TTI6-log) at 80 degrees C to less than 20 s. Treatment of milk with 7,000 ppm HP resulted in a similar level of inactivation in 60 s. Combined treatment with 1,260 ppm SH and 1,800 ppm HP inactivated spores of all strains in less than 20 s at 80 degrees C. Mixing 15 ppm PA with milk containing 1,260 ppm SH resulted in TTI6-log of 25 and 12 s at 72 and 80 degrees C, respectively. TTI6-log of less than 20 s were also achieved at 80 degrees C by using two combinations of biocides: 250 ppm SH, 700 ppm HP, and 150 ppm PA; and 420 ppm SH (pH 7), 1,100 ppm HP, and 15 ppm PA. These results indicated that different combinations of biocides could consistently result in 6-log reductions in the number of B. anthracis spores in less than 1 min at temperatures in the HTST range. This information could be useful for developing more effective thermal treatment strategies which could be used in HTST milk plants to process contaminated milk for disposal and decontamination, as well as for potential protective measures.  相似文献   

8.
The frequencies at which vegetative cells and spores of Clostridium botulinum strains 56A, 62A, 17409A, 25763A, 213B, B-aphis, and 169B formed colonies on agar media containing 0, 10(sup2), 10(sup3), and 10(sup4) IU of nisin per ml at 30(deg)C were determined. Strain 56A had the highest frequencies of nisin resistance, while strains 62A, 169B, and B-aphis had the lowest. For most strains, spores were more resistant than vegetative cells. One exposure to nisin was sufficient to generate stable nisin-resistant isolates in some strains. Stepwise exposure to increasing concentrations of nisin generated stable resistant isolates from all strains. Spores produced from nisin-resistant isolates maintained their nisin resistance. The frequency of spontaneous nisin resistance was reduced considerably by lowering the pH of the media and adding 3% NaCl. Nisin-resistant isolates of strains 56A and 169B also had increased resistance to pediocin PA1, bavaricin MN, plantaricin BN, and leuconocin S.  相似文献   

9.
SUMMARY: The action of various concentrations of nisin on the development of cells and spores from untreated and heated suspensions of Clostridium welchii added to gelatine has been investigated, using a tube colony count technique. The development of vegetative cells was prevented by the presence of 2 Reading Units (R.U.) of nisin/ml of the final culture medium, although the effective concentration may have been 6 R.U./ml. Approximately 40 R.U./ml prevented colony formation from spores. Gelatine containing nisin was dried. A considerable proportion of the activity of the antibiotic was still present after storage for 5 weeks.  相似文献   

10.
AIMS: To use bovicin HC5 to inhibit predominant bacteria isolated from spoiled mango pulp. METHODS AND RESULTS: Bovicin HC5 and nisin were added to brain heart infusion (BHI) medium (40-160 AU ml(-1)) or mango pulp (100 AU ml(-1)) and the growth of Bacillus cereus and Bacillus thuringiensis was monitored. Cultures treated with bovicin HC5 or nisin showed longer lag phases and grew slower in BHI medium. Bovicin HC5 and nisin were bactericidal and showed higher activity in mango pulp at acidic pH values. To determine the effect on spore germination and D values, mango pulp containing bovicin HC5 was inoculated with 10(6) and 10(9) spores per ml(-1), respectively, from each strain tested. Bovicin HC5 reduced the outgrowth of spores from B. cereus and B. thuringiensis, but thermal sensitivity was not affected. CONCLUSIONS: Bovicin HC5 was bactericidal against B. cereus and B. thuringiensis isolated from spoiled mango pulp. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacillus cereus and B. thuringiensis had not been previously isolated from spoiled mango pulp and bovicin HC5 has the potential to inhibit such bacteria in fruit pulps.  相似文献   

11.
The influence of nisin on intracellular ATP and cell numbers of Listeria monocytogenes strain Scott A was determined and compared with the effect of ampicillin and streptomycin under similar conditions. In the presence of nisin (3–12 μg/ml), intracellular ATP and cell numbers decreased rapidly during the first hour at 35°C and extracellular ATP increased. Cell numbers and intracellular ATP increased after 3 h of incubation. No effect was observed in cells treated with ampicillin (3–12 μg/ml) and streptomycin (15–60 μg/ml) during the first hour. However, concentrations of ≥3 μg/ml ampicillin and ≥30 μg/ml streptomycin were listeriostatic after 3 h of incubation. Progressive loss of viability and reduction of intracellular ATP were observed in resting cells in PBS (pH 7.2) containing increasing concentrations of the antimicrobials. Rapid accumulation of extracellular ATP, observed immediately after treatment with nisin but not with the antibiotics, supports the reported collapse of proton motive force in L. monocytogenes by nisin.  相似文献   

12.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

13.
The influence of controlled pH (5.0–6.5) and initial dissolved oxygen level (0–90% air saturation) on nisin Z production in a yeast extract/Tween 80-supplemented whey permeate (SWP) was examined during batch fermentations with citrate positive Lactococcus lactis subsp. lactis UL719. The total activity corresponding to the sum of soluble and cell-bound activities, as measured by a critical dilution method, was more than 50% lower at pH 5.0 than in the range 5.5–6.5, although the specific production decreased as pH increased. A maximum nisin Z activity of 8200 AU/ml (4100IU/ml) was observed in the supernatant after 8h of culture for pH ranging from 5.5 to 6.5. Prolonging the culture beyond 12h decreased this activity at pH 6.0 and 6.5 but not at pH 5.5 or 5.0. A corresponding increase in cell-bound activity was probably due to adsorption of soluble bacteriocin to the cell wall. Aeration increased cell-bound and total activity to maximum values of 32800 and 41000 AU/ml (16400 and 20500IU/ml), respectively, with an initial level of 60% air saturation after 24h of incubation at pH 6.0. The specific production at 60% or 90% initial air saturation was eight-fold higher than at 0%.  相似文献   

14.
We investigated the combined effects of pressure, temperature, pH, initial spore concentration and the presence of nisin on the survival of spores of Bacillus coagulans. Spores were more sensitive to pressure both at lower pH and at higher treatment temperatures. An additional 1.5-log10 reduction in cfu ml-1 was observed when pH was lowered from 7.0 to 4.0 during pressurization at 400 Mpa and 45°C. A 4-log10 cfu ml-1 reduction was observed when the temperature was increased from 25°C to 70°C during pressurization at 400 Mpa. The spores were sensitive to nisin at concentrations as low as 0.2 IU ml-1. At least a 6-log10 reduction was generally achieved with pressurization at 400 Mpa in pH 4.0 buffer at 70°C for 30 min when plated in nutrient agar containing 0.8 IU ml-1 nisin.  相似文献   

15.
An online removal of nisin by silicic acid coupled with a micro-filter module was proposed as an alternative to reduce detrimental effects caused by adsorption of nisin onto producer, enzymatic degradation by protease, and product inhibition during fermentation. In this study, silicic acid was successfully used to recover nisin from the fermentation broth of Lactococcus lactis subsp. lactis NIZO 22186. The effect of pH (at 6.8 and 3.0) during adsorption process and several eluents (deionized water, 20% ethanol, 1 M NaCl, and 1 M NaCl + 20% ethanol) for desorption were evaluated in a small batch scale. Higher nisin adsorption onto silicic acid was achieved when the adsorption was carried out at pH 6.8 (67% adsorption) than at pH 3.0 (54% adsorption). The maximum recovery was achieved (47% of nisin was harvested) when the adsorption was carried out at pH 6.8 and 1 M NaCl + 20% ethanol was used as an eluent for desorption. Most importantly, nisin production was significantly enhanced (7,445 IU/ml) when compared with the batch fermentation without the online recovery (1,897 IU/ml). This may possibly be attributed to preventing the loss of nisin due the detrimental effects and a higher biomass density achieved during online recovery process, which stimulated production of nisin during fermentation.  相似文献   

16.
Treatment of Bacillus cereus spores with nisin and/or pulsed-electric-field (PEF) treatment did not lead to direct inactivation of the spores or increased heat sensitivity as a result of sublethal damage. In contrast, germinating spores were found to be sensitive to PEF treatment. Nisin treatment was more efficient than PEF treatment for inactivating germinating spores. PEF resistance was lost after 50 min of germination, and not all germinated spores could be inactivated. Nisin, however, was able to inactivate the germinating spores to the same extent as heat treatment. Resistance to nisin was lost immediately when the germination process started. A decrease in the membrane fluidity of vegetative cells caused by incubation in the presence of carvacrol resulted in a dramatic increase in the sensitivity to nisin. On the other hand, inactivation by PEF treatment or by a combination of nisin and PEF treatments did not change after adaptation to carvacrol. Spores grown in the presence of carvacrol were not susceptible to nisin and/or PEF treatment in any way.  相似文献   

17.
In the present work, we studied the combined effects of pressure (300.0-700.0 MPa), temperature (30-70 degrees C) and the presence of nisin (0-333 IU/ml) on the inactivation of Clostridium botulinum 33A spores at various pressure holding times (7.5-17.5 min). Moreover, response surface methodology (RSM) was employed and a quadratic equation for HPP and nisin-induced inactivation was built with RSM. By analyzing the response surface plots and their corresponding contour plots as well as solving the quadratic equation, the experimental values were shown to be significantly in good agreement with predicted values because the adjusted determination coefficient (R(Adj)(2)) was 0.9261 and the level of significance was P<0.0001. The optimum process parameters for a six-log cycle reduction of C. botulinum spores were obtained as: pressure, 545.0 MPa; temperature, 51 degrees C; pressure holding time, 13.3 min; and nisin concentration, 129 IU/ml. The adequacy of the model equation for predicting the optimum response values was verified effectively for 10 test points. Compared to conventional high pressure processing (HPP) techniques, the main process advantages of HPP-nisin combination sterilization in the UHT milk are, lower pressure, natural preservative (nisin), and temperature in a shorter treatment time.  相似文献   

18.
Treatment of Bacillus cereus spores with nisin and/or pulsed-electric-field (PEF) treatment did not lead to direct inactivation of the spores or increased heat sensitivity as a result of sublethal damage. In contrast, germinating spores were found to be sensitive to PEF treatment. Nisin treatment was more efficient than PEF treatment for inactivating germinating spores. PEF resistance was lost after 50 min of germination, and not all germinated spores could be inactivated. Nisin, however, was able to inactivate the germinating spores to the same extent as heat treatment. Resistance to nisin was lost immediately when the germination process started. A decrease in the membrane fluidity of vegetative cells caused by incubation in the presence of carvacrol resulted in a dramatic increase in the sensitivity to nisin. On the other hand, inactivation by PEF treatment or by a combination of nisin and PEF treatments did not change after adaptation to carvacrol. Spores grown in the presence of carvacrol were not susceptible to nisin and/or PEF treatment in any way.  相似文献   

19.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

20.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号