首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
Acclimation of light sensitivity of hydraulic conductance of shoots of silver birch (Betula pendula) and hybrid aspen (Populus × wettsteinii) to growth environments with three different air humidities was studied. Hydraulic conductance of shoots kept for 1–2 h in darkness (D) or in light (L) was measured by the pressure chamber method, and light sensitivity was defined as a significant difference between D and L shoots. Light sensitivity of shoots grown in three different air humidities was found to vary. Amongst shoots grown in current natural air, only the hydraulic conductance of the whole shoot and that of the leaf blades of birch upper foliage were significantly light sensitive. Amongst shoots grown in decreased air humidity, hydraulic conductance of the whole shoot, the leaf blades, and the stem and petioles of birch upper foliage, the conductance of the whole shoot and the leaf blades of birch lower foliage, and the conductance of the whole shoot of aspen upper foliage were light sensitive. None of the shoots grown in increased air humidity were significantly light sensitive. We predict that light sensitivity will become more widespread among species in regions where air humidity decreases as a result of global climate change, and vice versa. Low white light always caused the same increase in hydraulic conductance as high white light, and blue and white light always caused an increase in conductance about two times greater than red light, indicating that growth environment did not markedly modify the mechanism of light sensitivity.  相似文献   

2.
Variations in the water relations and stomatal response of Quercus ilex were analysed under field conditions by comparing trees at two locations in a Mediterranean environment during two consecutive summers (1993 and 1994). We used the heat-pulse velocity technique to estimate transpirational water use of trees during a 5 month period from June to November 1994. At the end of sap flow measurements, the trees were harvested, and the foliage and sapwood area measured. A distinct environmental gradient exists between the two sites with higher atmospheric CO2 concentrations in the proximity of a natural CO2 spring. Trees at the spring site have been growing for generations in elevated atmospheric CO2 concentrations. At both sites, maximum leaf conductance was related to predawn shoot water potential. The effects of water deficits on water relations and whole-plant transpiration during the summer drought were severe. Leaf conductance and water potential recovered after major rainfall in September to predrought values. Sap flow, leaf conductance and predawn water potential decreased in parallel with increases in hydraulic resistance, reaching a minimum in mid-summer. These relationships are in agreement with the hypothesis of the stomatal control of transpiration to prevent desiccation damage but also to avoid ‘runaway embolism’. Trees at the CO2 spring underwent less reduction in hydraulic resistance for a given value of predawn water potential. The decrease in leaf conductance caused by elevated CO2 was limited and tended to be less at high than at low atmospheric vapour pressure deficit. Mean (and diurnal) sap flux were consistently higher in the control site trees than in the CO2 spring trees. The degree of reduction in water use between the two sites varied among the summer periods. The control site trees had consistently higher sap flow at corresponding values of either sapwood cross-sectional area or foliage area. Larger trees displayed smaller differences than smaller trees, between the control and the CO2 spring trees. A strong association between foliage area and sapwood cross-sectional area was found in both the control and the CO2 spring trees, the latter supporting a smaller foliage area at the corresponding sapwood stem cross-sectional area. The specific leaf area (SLA) of the foliage was not influenced by site. The results are discussed in terms of the effects of elevated CO2 on plant water use at the organ and whole-tree scale.  相似文献   

3.
The impact of xylem cavitation and embolism on leaf (K leaf) and stem (K stem) hydraulic conductance was measured in current-year shoots of Cercis siliquastrum L. (Judas tree) using the vacuum chamber technique. K stem decreased at leaf water potentials (ΨL) lower than ?1.0 MPa, while K leaf started to decrease only at ΨL L K leaf changes. Field measurements of leaf conductance to water vapour (g L) and ΨL showed that stomata closed when ΨL decreased below the ΨL threshold inducing loss of hydraulic conductance in the leaf. The partitioning of hydraulic resistances within shoots and leaves was measured using the high-pressure flow meter method. The ratio of leaf to shoot hydraulic resistance was about 0.8, suggesting that stem cavitation had a limited impact on whole shoot hydraulic conductance. We suggest that stomatal aperture may be regulated by the cavitation-induced reduction of hydraulic conductance of the soil-to-leaf water pathway which, in turn, strongly depends on the hydraulic architecture of the plant and, in particular, on leaf hydraulics.  相似文献   

4.
Sudden but transient changes in the fraction or illuminated foliage area in a well-watered 7-year-old Pinus radiata D. Don tree were imposed by completely covering either the upper 22% or the lower 78% of the foliage for periods of up to 36 h. Measurements of transpiration flux density (E), tree conductance (gt), stomatal conductance (gs) and net photosynthesis (A) were made to test the hypothesis that compensatory responses would occur in the remaining illuminated foliage when the cover was installed. When the lower foliage was covered there was an immediate decrease in gt. However, when tree conductance was normalized with respect to the illuminated leaf area (gt'), it increased between 50 and 75%, depending on the value of air saturation deficit (D). The effect was also apparent from concurrent measurements of increases in gs and A up to 59 and 24%, respectively, for needles in the top third of (he crown. When the cover was removed these effects were reversed. The changes in the lower foliage when the upper foliage was covered were much smaller. Changes in bulk needle water potential were small. It is suggested that the observed responses occurred because of a perturbation to the hydraulic pathway in the xylem that could have triggered the action of a chemical signal to regulate stomatal conductance and photosynthesis.  相似文献   

5.
In the tropics, old-growth forests are converted to other land cover types at a high rate and young secondary forest may gain in importance. Information on associated changes in leaf gas exchange and other leaf traits can be valuable for modelling biogeochemical fluxes under altered land-use patterns. We studied in situ photosynthetic parameters and stomatal conductance for water vapour in eight abundant tree species of young secondary forest and eight tree species of natural old-growth forest in Central Sulawesi, Indonesia. In sun leaves, the average maximal stomatal conductance (g smax) in the secondary forest (SF) species was 2.1 times higher than in the old-growth forest (OGF) species. Species with a high g smax reduced g s sharply when vapour pressure deficit of the air increased, whereas species with a low g smax were much less sensitive to air humidity. For area-based photosynthetic capacity (A max-area), the SF species had a 2.3 times higher average than the OGF species. For both, g smax and A max-area the variation among species was higher in the OGF than in the SF. When all tree species (n=16) are considered, species means of specific leaf area (SLA), leaf N concentration and leaf P concentration were significantly correlated with g smax and A max-area. The strong correlation between A max-area and foliar P (r 2=0.8) is remarkable as the alluvial soils in the study region are rich in nutrients. If the eight OGF species are analysed separately, the only significant correlation was observed between SLA and mass-based A max; in the SF species strong correlations were found between leaf size and A max-area and g smax. These results show that the conversion of old-growth forest to young secondary forest in Sulawesi significantly alters tree leaf gas exchange characteristics and that chemical and structural leaf traits can be used for the prediction of these changes. The best correlations between leaf gas exchange parameters and leaf traits were obtained by different traits in the SF species, the OGF species and the entire pool of studied species.  相似文献   

6.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

7.
Trees drought responses could be developed in the short- or in the long-term, aiming at sustaining carbon fixation and water use efficiency (WUE). The objective of this study was to examine short- and long-term adjustments occurring in different size Pinus ponderosa Dougl. ex P. & C. Laws trees in response to seasonal drought when they are growing under different competition level. The following variables were studied: branch and stem hydraulic conductivity, canopy and stomatal conductance (gc, gs), transpiration (E), photosynthesis (A max), wood δ13C (as a proxy of intrinsic WUE), leaf to sapwood area ratio (A L:A s) and growth in the biggest (B) and the smallest (S) trees of high (H) and low (L) density stands. A L:A s was positively correlated with tree size and negatively correlated with competition level, increasing leaf hydraulic conductance in H trees. Accordingly, higher gc and E per unit A L were found in H than in L trees when soil water availability was high, but decreased abruptly during dry periods. BL trees maintained stable gc and E values even during the summer drought. The functional adjustments observed in H trees allow them to maintain their hydraulic integrity (no apparent k s losses), but their stem and leaf growth were severely affected by drought events. iWUE was similar between all tree groups in a wet season, whereas it significantly decreased in SH trees in a dry season suggesting that when radiation and water are co-limiting gas exchange, functional adjustments not only affect absolute growth, but also WUE.  相似文献   

8.
Cotton (Gossypium hirsutum L. cv. CS50) plants were grown at two levels of relative humidity (RH) and sprayed daily with abscisic acid (ABA) at four concentrations. Plants grown at lower humidity had higher transpiration rates, lower leaf temperatures and lower stomatal conductance. Plant biomass was also reduced at low humidity. Within each humidity environment, increasing ABA concentration generally reduced stomatal conductance, evaporation rates, superficial leaf density and plant biomass, and increased leaf temperature and specific leaf area. As expected, decreased stomatal conductance resulted in decreased carbon isotope discrimination in leaf material ( Δ 13Cl). Plants grown at low humidity were more enriched in 18O than those grown at high RH, as theory predicts. Within each humidity environment, increasing ABA concentration increased oxygen isotope enrichment of leaf cellulose ( Δ 18Oc) and whole‐leaf tissue ( Δ 18Ol). Values of Δ 13Cl and Δ 18Ol predicted by theoretical models were close to those observed, accounting for 79% of the measured variation in Δ 13Cl and 95% of the measured variation in Δ 18Ol. Supporting theory, Δ 13Cl and Δ 18Ol in whole‐leaf tissue were negatively related.  相似文献   

9.
The hydraulic coordination along the water transport pathway helps trees provide adequate water supply to the canopy, ensuring that water deficits are minimized and that stomata remain open for CO2 uptake. We evaluated the stem and leaf hydraulic coordination and the linkages between hydraulic traits and the timing of diurnal depression of photosynthesis across seven evergreen tree species in the southern Andes. There was a positive correlation between stem hydraulic conductivity (ks) and leaf hydraulic conductance (KLeaf) across species. All species had similar maximum photosynthetic rates (Amax). The species with higher ks and KLeaf attained Amax in the morning, whereas the species with lower ks and KLeaf exhibited their Amax in the early afternoon concurrently with turgor loss. These latter species had very negative leaf water potentials, but far from the pressure at which the 88% of leaf hydraulic conductance is lost. Our results suggest that diurnal gas exchange dynamics may be determined by leaf hydraulic vulnerability such that a species more vulnerable to drought restrict water loss and carbon assimilation earlier than species less vulnerable. However, under stronger drought, species with earlier CO2 uptake depression may increase the risk of hydraulic failure, as their safety margins are relatively narrow.  相似文献   

10.
To characterise the stomata of six temperate deciduous tree species, sets of stomatal sensitivities to all the most important environmental factors were measured. To compare the importance of abscisic acid (ABA) in the different stomatal responses, the effect of exogenous ABA on all the stomatal sensitivities was determined.Almost all the stomatal sensitivities: the sensitivity to a decrease in leaf water potential, air humidity, CO2 concentration ([CO2]) and light intensity, and to an increase in [CO2] and light intensity were the highest in the slow-growing species, and the lowest in the fast-growing species. Drought increased the sensitivity to the environmental changes that induce a decrease in the stomatal conductance, and decreased the sensitivity to the changes that induce an increase in this conductance. The sensitivities of the slow-growers were most strongly affected by drought and ABA. Therefore the success of the slow-growers in their ecological niches can be based on the highly sensitive and strictly regulated responses of their stomata. The fast-growers had the highest sensitivity to an increase in leaf water potential and this sensitivity was sharply reduced by drought and ABA. Thus, the dominance of the trees in riparian areas can be based on the ability of their stomata to quickly reach high conductance in well-watered conditions and to efficiently decrease this rate during drought.Stomatal sensitivities to the hydraulic environmental factors (water potentials in plant and air) had higher values in well-watered trees and a more pronounced response to drought than the sensitivities to the photosynthetic environmental factors ([CO2] and light intensity). Thus, the hydraulic factors most likely prevail over the photosynthetic factors in determining stomatal conductance in these species.In response to exogenous ABA, the rates of stomatal closure, following a decrease in air humidity and light intensity, and an increase in [CO2], were accelerated. Stomatal opening following an increase in air humidity and light intensity and a decrease in [CO2] was replaced by slow closing. The rate of stomatal opening following an increase in leaf water potential was reduced. As the sensitivities to changes in light were modified less by the ABA than the other stomatal sensitivities, the prediction of stomatal responses on the basis of the sensitivity to light alone should be excluded in stomatal models.  相似文献   

11.
A combined system has been developed in which epidermal cell turgor, leaf water potential, and gas exchange were determined for transpiring leaves of Tradescantia virginiana L. Uniform and stable values of turgor were observed in epidermal cells (stomatal complex cells were not studied) under stable environmental conditions for both upper and lower epidermises. The changes in epidermal cell turgor that were associated with changes in leaf transpiration were larger than the changes in leaf water potential, indicating the presence of transpirationally induced within-leaf water potential gradients. Estimates of 3 to 5 millimoles per square meter per second per megapascal were obtained for the value of within-leaf hydraulic conductivity. Step changes in atmospheric humidity caused rapid changes in epidermal cell turgor with little or no initial change in stomatal conductance, indicating little direct relation between stomatal humidity response and epidermal water status. The significance of within-leaf water potential gradients to measurements of plant water potential and to current hypotheses regarding stomatal response to humidity is discussed.  相似文献   

12.
We investigated phloem-xylem interactions in relation to leaf hydraulic capacity in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) by using phloem girdling method. Removal of bark tissues (phloem girdling) at the branch base resulted in a substantial decline in stomatal conductance (gS), net photosynthetic rate (PN), and leaf hydraulic efficiency, and in increase of leaf water potential (ΨL). Although gS declined more than PN (83 versus 78 %), the ratio of intercellular to ambient CO2 concentrations (ci/ca) increased from 0.67 to 0.87 in three days after girdling. Girdling induced a decrease in leaf hydraulic conductance (KL) on average by 43 % (P = 0.006). The changes in gS and leaf conductance to water vapour were co-ordinated with KL only in girdled branches whereas intrinsic water-use efficiency was invariant to KL. The declines in KL with girdling were not accompanied by changes in potassium ion concentration ([K+]), electrical conductivity, or pH of xylem sap. The results suggest that phloem girdling at the branch base does not influence the recirculation of ions between the phloem and xylem in hybrid aspen and the decrease of KL in response to the manipulation is not related to changes in [K+] and total ionic content of xylem sap.  相似文献   

13.
The aim of this study was to examine the diurnal and seasonal variations in the sensitivity of leaf lamina (K lam) hydraulic conductance to irradiance in bur oak (Quercus macrocarpa Michx.) and trembling aspen (Populus tremuloides Michx.), which vary in their responses of K lam to irradiance. K lam was determined using the high-pressure method and the measurements were carried out in June, August and September. The irradiance response of K lam in bur oak was present throughout the day and declined in senescing leaves. In trembling aspen, K lam declined from morning to late afternoon and drastically decreased before the onset of leaf senescence, but it was not sensitive to irradiance. In both tree species, the capacity of the petioles to supply water to leaf lamina changed during the day in accordance with the ability of the leaf lamina to transport water. Petiole hydraulic conductivity (K pet) declined during the season in bur oak leaves, while it tended to increase in trembling aspen leaves. There was no correlation between the K lam values and air temperature or light intensity at the time of leaf collection. For trembling aspen, K pet was negatively correlated with the air temperature suggesting sensitivity to drought. We conclude that the water transport properties of petioles and leaf lamina in the two studied tree species reflect their ecological adaptations. Trembling aspen leaves have high hydraulic conductivity and high stomatal conductance regardless of the irradiance level, consistent with the rapid growth and high demand for water. In contrast, the increased lamina hydraulic conductivity and stomatal conductance under high irradiance in bur oak trees reflect a water conservation strategy.  相似文献   

14.
The objective of the present study was to examine the functional coordination among hydraulic traits, xylem characteristics and gas exchange rates across three deciduous Euphorbiaceae tree species (Hevea brasiliensis, Macaranga denticulata and Bischofia javanica) and three evergreen Euphorbiaceae tree species (Drypetes indica, Aleurites moluccana and Codiaeum variegatum) from a seasonally tropical forest in south-western China. The deciduous tree species were more vulnerable to water stress-induced embolism than the evergreen tree species. However, the deciduous tree species generally had higher maximal rates of sapwood and leaf-specific hydraulic conductivity (K S and K L), respectively. Compared with the evergreen tree species, the deciduous tree species, however, possessed a lower density of sapwood and a wider diameter of xylem vessels. Regardless of leaf phenology, the hydraulic vulnerability and conductivity were significantly correlated with sapwood density and mean vessel diameter. Furthermore, the hydraulic vulnerability was positively correlated with water transport efficiency. In addition, the deciduous tree species exhibited higher maximal photosynthetic rates (A max) and stomatal conductance (g max), but lower water use efficiency (WUE). Interestingly, the A max, g max and WUE were strongly correlated with K S and K L across the deciduous and evergreen tree species. These results suggest that xylem structure, rather than leaf phenology, accounts for the difference in hydraulic traits between the deciduous tree species and the evergreen tree species. Meanwhile, our results show that there is a significant trade-off between hydraulic efficiency and safety, and a strong functional correlation between the hydraulic capacity and gas exchange rates across the deciduous and evergreen tree species.  相似文献   

15.
Shoots of the tropical latex-producing tree Hevea brasiliensis (rubber tree) grow according to a periodic pattern, producing four to five whorls of leaves per year. All leaves in the same whorl were considered to be in the same leaf-age class, in order to assess the evolution of photosynthesis with leaf age in three clones of rubber trees, in a plantation in eastern Thailand. Light-saturated CO2 assimilation rate (A max) decreased more with leaf age than did photosynthetic capacity (maximal rate of carboxylation, V cmax , and maximum rate of electron transport, J max), which was estimated by fitting a biochemical photosynthesis model to the CO2-response curves. Nitrogen-use efficiency (A max/Na, Na is nitrogen content per leaf area) decreased also with leaf age, whereas J max and V cmax did not correlate with N a. Although measurements were performed during the rainy season, the leaf gas exchange parameter that showed the best correlation with A max was stomatal conductance (g s). An asymptotic function was fitted to the A max-g s relationship, with R 2 = 0.85. A max, V cmax, J max and g s varied more among different whorls in the same clone than among different clones in the same whorl. We concluded that leaf whorl was an appropriate parameter to characterize leaves for the purpose of modelling canopy photosynthesis in field-grown rubber trees, and that stomatal conductance was the most important variable explaining changes in A max with leaf age in rubber trees.  相似文献   

16.
Summary CO2-assimilation and leaf conductance of Larix decidua Mill. were measured in the field at high (Patscherkofel, Austria) and low (Bayreuth, Germany) elevation in Europe, and outside its natural range along an altitudinal gradient in New Zealand.Phenology of leaf and stem growth showed New Zealand sites to have much longer growing seasons than in Europe, so that the timberline (1,330 m) season was almost twice as long as at the Austrian timberline (1,950 m).The maximum rates of photosynthesis, A max, were similar at all sites after completion of leaf growth, namely 3 to 3.5 mol m-2 s-1. Only the sun needles of the Bayreuth tree reached 3.5 to 5 mol m-2 s-1. Light response curves for CO2-assimilation changed during leaf ontogeny, the slope being less in young than in adult leaves. The temperature optimum for 90% of maximum photosynthesis was at all sites similar between ca. 12–28°C for much of the summer. Only at the cooler high altitude timberline sites were optima lower at ca. 10–16°C in developing needles during early summer.A linear correlation existed between A max and leaf conductance at A max, and this showed no difference between the sites except for sun needles at Bayreuth.Leaf conductance responded strongly to light intensity and this was concurrent with the light response of CO2-uptake. A short-term and a long-term effect were differentiated. With increasing age maximum rates of CO2-uptake and leaf conductance at A max increased, whereas short-term response during changes in light declined. The stomata became less responsive with increasing age and tended to remain open. The stomatal responses to light have a significant effect on the water use efficiency during diurnal courses. A higher water use efficiency was found for similar atmospheric conditions in spring than in autumn.Stomata responded with progressive closure to declining air humidity in a similar manner under dissimilar climates. Humidity response thus showed insensitivity to habitat differences.From the diurnal course of gas-exchange stomata were more closed at timberline (1,330 m) than at lower elevations but this did not lead to corresponding site differences in CO2-exchange suggesting Larix may not be operating at high water use efficiency when air is humid.The main difference between habitats studied was in the time necessary for completion of needle development. Similarity in photosynthesis and leaf conductance existed between sites when tree foliage was compared at the same stage of development. Length of growing season and time requirement for foliar development appear to be a principle factor in the carbon balance of deciduous species. The evergreen habit may be more effective in counterbalancing the effects of cool short summers.Dedicated with the greatest appreciation to the 75th birthday of Prof. Dr. M. Evenari  相似文献   

17.
Daily and annual courses of leaf transpiration, stomatal conductance and shoot water potential of four Quercus suber individuals were compared in a semi-natural stand in southwest Portugal, from spring 1989 to early summer 1990.The trees investigated showed annual patterns typical of evergreen sclerophyllous species but varied in their range of stomatal operation. This appeared to be related to differences in hydraulic conductivity in the root-to-leaf pathway.Maximum stomatal conductance and transpiration rates occurred from March to June.Water stress was found to be moderate and winter cold stress due to low air and soil temperatures appeared to have an influence on plant water balance through their effects on flow resistances.Abbreviations gsw stomatal conductance - gmax maximum stomatal conductance - PAR photosynthetically active radiation - RH relative humidity of the air - T leaf transpiration - Ta air temperature - TL leaf temperature - Tmax maximum leaf transpiration - W air-to-leaf vapor pressure difference - shoot water potential - PD predawn shoot water potential - MIN minimum shoot water potential  相似文献   

18.
This study assessed the variation of leaf anatomy, chlorophyll content index (CCI), maximal stomatal conductance (g s max ) and leaf wettability within the canopy of an adult European beech tree (Fagus sylvatica L.) and for beech saplings placed along the vertical gradient in the canopy. At the top canopy level (CL28m) of the adult beech, CCI and leaf anatomy reflected higher light stress, while g s max increased with height, reflecting the importance of gas exchange in the upper canopy layer. Leaf wettability, measured as drop contact angle, decreased from 85.5°?±?1.6° (summer) to 57.5°?±?2.8° (autumn) at CL28m of the adult tree. At CL22m, adult beech leaves seemed to be better optimized for photosynthesis than the CL28m leaves because of a large leaf thickness with less protective and impregnated substances, and a higher CCI. The beech saplings, in contrast, did not adapt their stomatal characteristics and leaf anatomy according to the same strategy as the adult beech leaves. Consequently, care is needed when scaling up experimental results from seedlings to adult trees.  相似文献   

19.
Acclimation responses of mature Abies amabilis sun foliage to shading   总被引:2,自引:0,他引:2  
This paper addresses two main questions. First, can evergreen foliage that has been structurally determined as sun foliage acclimate physiologically when it is shaded? Second, is this acclimation independent of the foliage ageing process and source-sink relations? To investigate these questions, a shading and debudding experiment was established using paired branches on opengrown Abies amabilis trees. For each tree, one branch was either shaded, debudded, or both, from before budbreak until the end of summer, while the other branch functioned as a control. Foliage samples were measured both prior to and during treatment for photosynthesis at light saturation (A max), dark respiration, nitrogen content, chlorophyll content, chlorophyll-to-nitrogen ratio and chlorophyll a:b ratio. All age classes of foliage responded similarly during the treatment, although pre-treatment values differed between age classes. Within 1 month after the treatment began, A max was lower in shaded foliage and remained lower throughout the treatment period. For debudded branches, A max was lower than the controls only during active shoot elongation. At the end of the treatments in September, A max in shade-treated sun foliage matched the rates in the true shade-formed foliage, but nitrogen remained significantly higher. By 1.5 months after treatment, chlorophyll content in shaded foliage was higher than in controls, and the chlorophyll a:b ratio was lower for the shaded foliage. On debudded branches, chlorophyll content and chlorophyll a:b ratio were similar to the values in control samples. Shading lowered the rate of nitrogen accumulation within a branch, while removing debudding decreased the amount of sequestered N that was exported from the older foliage to supply new growth. By September, chlorophyll content in shade-treated foliage was higher than that in the control sun foliage or in true shade foliage. The chlorophyll increase as a result of shading was unexpected. However, the chlorophyll-to-nitrogen ratio was identical for the shade-treated sun foliage and the true shade foliage while being significantly lower than the control sun foliage. It appears that acclimation to shading in mature foliage involves a reallocation of nitrogen within the leaf into thylakoid proteins. A redistribution of resources (nitrogen) among leaves is secondary and appears to function on a slower time scale than reallocation within the leaf. Thus, A. amabilis foliage that is structurally determined as sun foliage can acclimate to shade within a few months; this process is most likely independent of ageing and is only slightly affected by source-sink relations within a branch.  相似文献   

20.
Sellin A  Kupper P 《Oecologia》2005,142(3):388-397
Responses of leaf conductance (gL) to variation in photosynthetic photon flux density (QP), leaf-to-air vapour pressure difference (VPD), bulk leaf water potential (x), and total hydraulic conductance (GT) were examined in silver birch (Betula pendula Roth) with respect to leaf position in the crown. To reduce limitations caused by insufficient water supply or low light availability, experiments were also performed with branchlets cut from two different canopy layers. The intact upper-canopy leaves demonstrated 1.8–2.0 times higher (P<0.001) daily maxima of gL compared with the lower-canopy leaves growing in the shadow of upper branches. In the morning, gL in the shade foliage was primarily constrained by low light availability, in the afternoon, by limited water supply. Leaf conductance decreased when x fell below certain values around midday, while the sun foliage experienced greater negative water potentials than the shade foliage. Midday stomatal openness was controlled by leaf water status and temperature, rather than by transpiration rate (E) via the feedforward mechanism. Mean GT was 1.7 times higher (P<0.001) for the upper-canopy foliage compared to that of the lower canopy. At least 34–39% of the total resistance to the water flow from soil up to the shade foliage, and 54% up to the sun foliage, resided in 30-cm distal parts of the branches. Artificial reduction of hydraulic constraints raised x and made gL less sensitive to changes in both atmospheric and plant factors. Improved water supply increased gL and E in the lower-canopy foliage, but not in the upper-canopy foliage. The results support the idea that leaves in the lower canopy are hydraulically more constrained than in the upper canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号