首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Within a local population genotypes differ in the timing of bud burst, but genotypes with early bud burst unfold their leaves slower, resulting in an equal period of carbon gain.

Abstract

The ability of local populations to cope with disturbances like adverse weather events or a changing climate depends on the genotypic richness of such populations, emphasising the importance of differences between genotypes in traits related to growth and survival at this scale. Due to their longevity, these differences are of special importance in trees, yet for trees, differences between genotypes within local populations remain unexplored. The phenological cycle is important in this respect, since a correct timing of phenological events is critical for growth and survival of trees, especially in environments with strong seasonality and changes in the timing of phenological events has consequences for, among others, net ecosystem productivity and the climate system as a whole. In this light accounting for differences in the timing of phenological events within species is currently identified as a research challenge. This study contributes to the knowledge of differences between genotypes on the small spatial scale of a local population. We examined the timing of phenological events of 15 micropropagated silver birch (Betula pendula Roth) genotypes representing a natural population. Measurements covered bud burst (7 years) and leaf unfolding in spring and chlorophyll degradation in autumn (2 years for both). These data were used to estimate the period of carbon gain. Differences between genotypes in the temperature sum required for bud burst were present, with genotypes showing ‘early’ (i.e. a low temperature sum requirement for bud burst) and ‘late’ bud burst across the 7-year study period. Differences were small in most years (i.e. 3 days), but differences of 16 days were recorded within the 7-year study period as well. Genotypes with ‘early’ bud burst were less sensitive to variations in environmental conditions in spring compared to genotypes with ‘late’ bud burst. Differences in bud burst were not carried over to the estimated period of carbon gain. Due to faster leaf expansion in genotypes with ‘late’ bud burst and the lack of differences between genotypes in autumn senescence the estimated period of carbon gain was similar among genotypes.  相似文献   

2.
Non-structural carbohydrates in silver birch (Betula pendula Roth) wood were analysed in a 7-year-old clone and in five mature stems. The analysis was conducted to obtain more detailed information on seasonal fluctuation of these components and of the tree-to-tree variation and within stem variation. The sugars were analysed by GLC-MS. The smallest total soluble sugar amounts (consisting of sucrose, fructose, glucose, raffinose and myo-inositol) in young trees were measured during mid-summer (ca. 0.3%) and the largest while in dormancy (ca. 1.6% on wood dry weight basis). Raffinose was detected in autumn as a minor component. The proportion of monosaccharides and the amount of myo-inositol were largest during growth. Compared to other studies silver birch showed more evident seasonal fluctuation in soluble sugars than evergreen tree species. The sugar amount in mature stems was approximately at the same level as in young trees that had the same felling time. Tree-to-tree variation in the non-structural carbohydrates in the mature wood was fairly large. However, the amount of total soluble sugars, sucrose and glucose showed significant variation within the stem. The amount of these sugars was largest in samples that were taken close to the cambium. Starch was also detected close to pith. According to the heartwood definition and starch measurement results in this paper, it could be stated that silver birch does not form heartwood.  相似文献   

3.
The use of genetic modification (GM) in tree breeding would require that GM trees are superior to currently used seed orchard seedlings in the target trait and equal in other traits. We compare the variation of silver birch (Betula pendula Roth) lines carrying a sugar beet chitinase IV gene (chiIV) with the objective to improve fungal disease resistance to the variation of wild-type genotypes in disease resistance and other adaptive traits. The genetic variation in disease resistance was at the same level in transgenic (CVg 0.9?C19.0%) and wild-type trees (CVg 0?C19.7%), but the resistance characteristics of the most resistant wild-type genotype were usually equal or better than those of the best transgenic line. The broad-sense heritabilities varied from very low to moderate in disease resistance in both types. Broad-sense heritabilities in growth and leaf phenology-related traits were moderate and generally higher among the transgenic than the wild-type trees. The introduction of the sugar beet chiIV gene is likely to have fitness consequences in the form of lowered growth and quality characteristics of the transgenic lines without significant improvement in disease resistance compared with the natural variation of the same traits.  相似文献   

4.
The effects of long‐term elevated UV‐B radiation on silver birch (Betula pendula Roth) seedlings were studied over three growing seasons in an outdoor experiment in Finland started 64 days after germination. One group of seedlings was exposed to a constant 50% increase in UV‐BCIE radiation, which corresponds to 20–25% of ozone depletion; another group received a small increase in UV‐A radiation and a third (the control group) received ambient solar radiation. Changes in growth appeared during the third growing season; the stems of the UV‐B treated seedlings were thinner and their height tended to be shorter compared with that of the control seedlings. In contrast, there were no UV‐B effects on biomass, bud burst, bud dry weights, leaf area, rust frequency index or chlorophyll concentrations in any of the summers. During the three‐year study, the flavonols were significantly increased by the elevated UV‐B only in the first growing season. The responses varied greatly among individual compounds; the most induced were the quercetin glycosides, while the main flavonols, myricetins, were reduced by the UV‐A control treatment. In the second summer phenolic acids, such as 3,4′‐dihydroxypropiophenone‐3‐glucoside, neochlorogenic acid and 5‐coumarylquinic acid, were increased by the UV‐B treatment. In the third year, the constitutive concentrations of phenolics were not affected by the UV‐B treatment.  相似文献   

5.
6.
Despite intensive research on genetic regulation of flower development there are still only a few studies on the early phases of this process in perennial plants like trees. The aim of this study has been to identify genes that regulate early stages of inflorescence development in silver birch ( Betula pendula Roth) and to follow the expression of these genes during development of the unisexual birch inflorescences. Here we describe the cloning and characterization of 3 cDNAs representing MADS-box genes designated BpMADS3, BpMADS4 and BpMADS5, all belonging to the AP1/SQUA group of plant MADS-box genes. According to RNA blot analysis, all 3 genes are active during the development of both male and female inflorescences. However, differences in patterns of expression suggest that they play different roles. BpMADS3 is most similar in sequence to AP1 and SQUA, but it seems to have the highest expression at late developmental stages. BpMADS4 is most similar in sequence to the Arabidopsis gene FRUITFULL , but is expressed, in addition to developing inflorescences, in shoots and roots. BpMADS5 is also similar to FRUITFULL; its expression seems to be inflorescence-specific and continues during fruit development. Ectopic expression of either BpMADS3, BpMADS4 or BpMADS5 with the CaMV 35S promoter in tobacco results in extremely early flowering. All of these birch genes seem to act early during the transition to reproductive phase and might be involved in the determination of the identity of the inflorescence or flower meristem. They could apparently be used to accelerate flowering in various plant species.  相似文献   

7.
8.
Plants respond to feeding injury by chewing insects by inducing both a general response to mechanical wounding and a specific response to herbivore-associated elicitors. In both cases, plant response involves complex biochemical and physiological changes. We compared chemical and physical responses of paper birch (B. papyrifera) and European white birch (B. pendula) stems to mechanical injury to determine if aspects of their wound response correspond with the much higher resistance of paper birch to bronze birch borer (Agrilus anxius). We also characterized stem responses to mechanical wounding plus bronze birch borer larval homogenate to determine if larval cues elicited a more specific response than mechanical wounding alone. In both species, wounding decreased concentrations of individual phenolics, total phenolics, and condensed tannins, perhaps because they were diverted to lignin biosynthesis, the concentration of which increased. Nitrogen concentration increased in both species while free amino acid concentrations declined, perhaps because they were utilized to synthesize proteins. Application of larval homogenate did not elicit a response different from that induced by mechanical injury. When comparing wound responses of the two birch species, phenolic profiles differed most conspicuously. However, multivariate analyses revealed no differences between constitutive and wound-induced phenolic profiles within each species, and the rate of wound periderm growth was equivalent between species. These results suggest that components of the wound response we measured may not contribute to interspecific variation in bronze birch borer resistance of paper birch and European white birch.  相似文献   

9.
A sugar beet chitinase gene driven by the (42) CaMV 35S promoter was introduced into silver birch (Betula pendula) through Agrobacterium-mediated transformation. Transgenic shoots were regenerated and grown on WPM medium supplemented with 150 mg/ml kanamycin. From a total of 220 explants, 52 transgenics were obtained and 13 transgenic lines were randomly taken for molecular analysis to confirm the presence of the introduced sugar beet chitinase 4 cDNA by polymerase chain reaction and Southern hybridisation. All 13 transgenic lines were confirmed to contain the gene and further characterised. Northern blot analysis of total RNA indicated that the transgenic lines differed with respect to the steady-state levels of chitinase mRNA. Transgenic lines with high levels of mRNA of chitinase 4 cDNA consistently showed higher levels of resistance to Pyrenopeziza betulicola than transgenics with intermediate or low mRNA levels or a non-transgenic control plant. This report demonstrates that the constitutive expression of this gene in transgenic birch lines increased the resistance of birch against the leaf spot fungus P. betulicola.  相似文献   

10.
The effects of increased ultraviolet‐B (UV‐B) radiation on the growth, mycorrhizas and mineral nutrition of silver birch (Betula pendula Roth) seedlings were studied in greenhouse conditions. Seedlings—planted in a birch‐forest top soil and sand substrate—were grown without additional nutrient supply. Ultraviolet treatment started immediately after the seedlings emerged and the daily integrated biologically effective UV‐B irradiance on the UV‐B‐treated plants was equivalent to a 25% depletion of stratospheric ozone under clear sky conditions. Visible symptoms of UV‐B damage or nutrient deficiency were not observed throughout the experiment. Seedling height and dry weight (DW) (measured after 58 days and 76 days of treatment) were not affected by increased UV‐B. However, a significant shift in DW allocation toward roots resulted in a lower shoot/root ratio and leaf area ratio in UV‐B‐treated plants compared to control plants. At the first harvest (after 58 days of treatment), the percentage of various mycorrhizal morphotypes and the number of short roots per unit of root length or weight were not affected by increased UV‐B despite significantly increased DW allocation toward roots. Subtle reduction in the allocation of nitrogen (N) to leaves and increased allocation of phosphorus (P) to roots may suggest cumulative effects that could affect the plant performance over the long‐term.  相似文献   

11.
Leaf development and senescence were studied in greenhouse-grown silver birch ( Betula pendula Roth) seedlings over a period of 7 weeks. Prior to the experiment, leaves from 100 seedlings were marked for five sampling dates. Timing of the developmental phases was studied with biochemical analyses of total soluble protein, Rubisco protein, chlorophyll concentration and at the level of gene expression related to photosynthesis, energy metabolism, ethylene synthesis and protein degradation. During the sampling period, an initial increase in photosynthetic capacity could be seen, when expression of the Rubisco small subunit gene ( RbcS ) and Rubisco protein (EC 4.1.1.39) were examined. Down-regulation of photosynthesis, visible as a decrease in Rubisco protein and RbcS mRNA, started soon after full expansion of the leaves and processes related to senescence followed. mRNA accumulation for the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase increased first during the onset of senescence. Protein degradation was observed as a loss of soluble proteins, with a simultaneous increase in the leucine aminopeptidase (EC 3.4.11.1) mRNA levels. The mRNA levels of ribonuclease-like pathogenesis-related protein 10 also increased clearly during senescence, but the mitochondrial phosphate translocator mRNA showed only a slight increase. Chlorophyll concentration of the leaves decreased after the mRNA levels of these senescence-related genes had become more abundant.  相似文献   

12.
13.
Plant and Soil - In the future, boreal forests will be growing in a warmer climate with more fluctuating soil moisture conditions. However, the knowledge about the effects of simultaneous warming...  相似文献   

14.
15.
Long-term microbiological investigation of the pollen of silver birch (Betula pendula) in the Moscow and Moscow oblast areas revealed that almost one-third of the analyzed samples contained the fungus identified by morphological, cultural, and molecular genetic techniques as Quambalaria cyanescens (de Hoog & G.A. de Vries) Z.W. de Beer, Begerow & R. Bauer. This species was previously known mostly as a symbiont of tropical plants of the genera Eucalyptus and Corymbia and have not been isolated in Russia. We revealed a close association between Quambalaria cyanescens and silver birch. The micromycete was regularly detected in pollen samples, as well as on the inside and outside of the aments, and on the surface of leaves and branches. It was never isolated from other plant species in the investigated area. The data on the morphological and cultural characteristics of the fungus, its cell ultrastructure, and occurrence are presented, as well as the phylogenetic analysis of the isolated strains.  相似文献   

16.
This study investigates the drought response of four genotypes of Betula pendula with a focus on leaf and root morphological traits, leaf phenology and carbon partitioning between shoot and root. Potted one-year-old clonal plants of four genotypes from regions with low to high annual rainfall (550–1270 mm year−1) were subjected to drought periods of 12–14 weeks in two subsequent years. Well-watered control plants of the four genotypes differed significantly with respect to total leaf area per plant (LA) and specific leaf area (SLA), whereas differences in total fine root surface area (RA), root specific area (SRA), and the fine root:leaf mass ratio (FR:LM) were not significant. Highest LA and SLA were found in the clone originating from the driest environment. In complementary physiological investigations this clone was found to have the highest water use as well which was interpreted as competitive superiority in terms of water consumption. Drought resulted in an increase in SLA in all genotypes, and a decrease in LA. Leaf area reduction was more pronounced in the genotypes from high than in those from low rainfall origin. The ratio of total root to leaf surfaces remained more or less constant after drought application despite an increase in FR:LM. This is explained by a decrease in SRA resulting from a reduced abundance of very small fine rootlets (diameter <0.2 mm) in the drought-treated plants. The loss in total root surface area due to a reduction in finest root mass was compensated for by a relative increase in total root dry mass per plant. Comparison of results from the first and second drought period indicated a marked influence of timing of drought, root system size, and putative root limitation on plant drought response. We conclude that leaf and root morphology, the total leaf and root surfaces, and the morphological response to drought in birch are to a large extent under genetic control.  相似文献   

17.
18.
Small birch plants ( Betula pendula Roth .) were grown at different rates of exponentially increasing nitrogen supply. This resulted in plants with different relative growth rates and different internal nitrogen concentrations. Within a nitrogen treatment, both of these variables remained constant with time.
Free amino acids were measured in leaves and roots of the seedlings at two different harvests. At greater nitrogen supply, higher concentrations of total amino acid nitrogen were found in roots and leaves. The ratio of amino acid nitrogen to total nitrogen was low albeit greater at higher nitrogen supply. Higher concentrations of amino acid nitrogen were mainly due to high concentrations of citrulline, glutamine, γ-aminobuitric acid and arginine.
Greater leaf concentrations of amino acid nitrogen at higher nitrogen supply may be related lo increased concentrations in the xylem sap and/or may be indicative of small excesses of nitrogen with respect to current nitrogen usage in protein synthesis.  相似文献   

19.
Summary Qualitative and quantitative aspects of heterotrophic carbon assimilation by mycorrhizal plants of birch (Betula pendula) were examined. Plants were grown aseptically from seed in the mycorrhizal condition with the fungus Hebeloma crustuliniforme and in the non-mycorrhizal condition, with protein as their sole exogenous nitrogen source. Yields and nitrogen contents were determined in some of the plants, while the roots of others were supplied with 14C-labelled protein and their shoots exposed for up to 72 h to different irradiance regimes. Only mycorrhizal plants utilised the organic nitrogen. Uptake of carbon associated with this utilisation and its translocation to the leaves was demonstrated directly by means of autoradiography. Amounts of activity transferred to shoots were greatest in low irradiance regimes. Calculation of net carbon gain from the heterotrophic source, based upon the assumption that breakdown products of protein are assimilated as amino-acids, indicates that over a 55-day growth period up to 9% of plant C may be derived from protein. The physiological and ecological significance of these findings are discussed.  相似文献   

20.
Binding of Cd to non-specific metal-binding peptides (phytochelatins)in birch roots has been suggested as an explanation for toleranceto Cd toxicity in birch (Betula pendula). In the present study,the tolerance of birch roots to Cd was further investigatedby using buthionine sulphoximine (BSO) as an inhibitor of phytochelatinsynthesis. Birch seedlings, grown in nutrient solution at pH4.2, were exposed to 0 or 2 µM CdCl2 combined with 0 or0.1 mM BSO for 6 d. Plant growth (fresh weight increase andshoot to root dry weight ratio) and the nutrient compositionin fine roots, whole roots and shoots were determined. The effectsof Cd on growth confirms the results of earlier studies on birch,suggesting a reduced shoot growth, but preserved or stimulatedroot growth. When Cd and BSO were combined, overall plant growthwas severely reduced. BSO was also shown to aggravate Cd-inducedreductions of root and shoot concentrations of K, Ca and Mgbut to impede the accumulation of Cd. The results suggest that phytochelatins participate in protectingthe root against Cd interferences with growth, possibly by restrictingCd-induced changes in the nutrient composition of the plant. Key words: Betula pendula, buthionine sulphoximine, cadmium, phytochelatins, roots, tolerance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号