首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the tobacco gene hsr203 is rapid, highly localized, specific for incompatible plant-pathogen interactions, and strongly correlated with programmed cell death occurring in response to diverse pathogens. Functional characterization of hsr203 gene product has shown that HSR203 is a serine hydrolase that displays esterase activity. We show here that transgenic tobacco plants deficient in HSR203 protein exhibit an accelerated hypersensitive response when inoculated with an avirulent strain of Ralstonia solanacearum. This response was accompanied by a maximal level of cell death and a drastic inhibition of in planta bacterial growth. Transgenic plants deficient in HSR203 were also found to show increased resistance in a dosage-dependent manner to Pseudomonas syringae pv. pisi, another avirulent bacterial pathogen, and to virulent and avirulent races of Phytophthora parasitica, a fungal pathogen of tobacco, but not to different virulent bacteria. Surprisingly, expression of another hsr gene, hsr515, and that of the defence genes PR1-a and PR5, was strongly reduced in the transgenic lines. Our results suggest that hsr203 antisense suppression in tobacco can have pleiotropic effects on HR cell death and defence mechanisms, and induces increased resistance to different pathogens.  相似文献   

2.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.  相似文献   

3.
One of the earliest signal transduction events that trigger the hypersensitive response (HR) of plants against pathogen attack is thought to be an alteration of proton flux across the plasma membrane (PM). However, no direct genetic evidence for the involvement of PM-localised proton channels or pumps in the induction of this response has been reported. We previously showed that expression of the bacterial proton pump bacterio-opsin (bO) in transgenic plants resulted in the spontaneous activation of the HR. Here we show that the bO protein is likely localised to the PM in transgenic tobacco plants. Furthermore, mutational analysis shows that induction of the HR by bO expression is dependent upon the capability of bO to translocate protons. Although bO functions as a light-driven proton pump in Halobacteria when assembled with retinal, we also show by mutational analysis that this chromophore binding is unnecessary for its in planta activity. Taken together, our results suggest that expression of bO in plants leads to the insertion of a passive proton channel into the PM. The activity of this channel in the PM results in spontaneous activation of cell death and HR-associated phenotypes including enhanced resistance to a broad spectrum of plant pathogens. Our work provides direct molecular evidence to support a working model in which alterations in ionic homeostasis at the level of the PM may work as one of the critical steps in the signalling pathway for the activation of the HR.  相似文献   

4.
Sphingolipids have key functions in plant membrane structure and signaling. Perturbations of plant sphingolipid metabolism often induce cell death and salicylic acid (SA) accumulation; SA accumulation, in turn, promotes sphingolipid metabolism and further cell death. However, the underlying molecular mechanisms remain unclear. Here, we show that the Arabidopsis thaliana lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its partner PHYTOALEXIN DEFICIENT 4 (PAD4) participate in sphingolipid metabolism and associated cell death. The accelerated cell death 5 (acd5) mutants accumulate ceramides due to a defect in ceramide kinase and show spontaneous cell death. Loss of function of EDS1, PAD4 or SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2) in the acd5 background suppressed the acd5 cell death phenotype and prevented ceramide accumulation. Treatment with the SA analogue benzothiadiazole partially restored sphingolipid accumulation in the acd5 pad4 and acd5 eds1 double mutants, showing that the inhibitory effect of the pad4-1 and eds1-2 mutations on acd5-conferred sphingolipid accumulation partly depends on SA. Moreover, the pad4-1 and eds1-2 mutations substantially rescued the susceptibility of the acd5 mutant to Botrytis cinerea. Consistent with this, B. cinerea-induced ceramide accumulation requires PAD4 or EDS1. Finally, examination of plants overexpressing the ceramide synthase gene LAG1 HOMOLOGUE2 suggested that EDS1, PAD4 and SA are involved in long-chain ceramide metabolism and ceramide-associated cell death. Collectively, our observations reveal that EDS1 and PAD4 mediate ceramide (especially long-chain ceramide) metabolism and associated cell death, by SA-dependent and SA-independent pathways.  相似文献   

5.
6.
7.
The molecular links between cell cycle control and the regulation of programmed cell death are largely unknown in plants. Here we studied the relationship between the cell cycle and elicitor-induced cell death using synchronized tobacco BY-2 cells. Flow cytometry and fluorescence microscopy of nuclear DNA, and RNA gel-blot analyses of cell cycle-related genes revealed that the proteinaceous elicitor cryptogein induced cell cycle arrest at the G1 or G2 phase before the induction of cell death. Furthermore, the patterns of cell death induction and defence-related genes were different in different phases of the cell cycle. Constitutive treatment with cryptogein induced cell cycle arrest and cell death at the G1 or G2 phase. With transient treatment for 2 h, cell cycle arrest and cell death were only induced by treatment with the elicitor during the S or G1 phase. By contrast, the elicitor-induced production of reactive oxygen species was observed during all phases of the cell cycle. These results indicate that although recognition of the elicitor signal is cell cycle-independent, the induction of cell cycle arrest and cell death depends on the phase of the cell cycle.  相似文献   

8.
As much as the definition of life may be controversial, the definition of death also may prove problematic. In recent years it became apparent that the death of a living cell may follow more than one possible scenario: it may result from an externally applied physical injury (an accidental death), or it may be the outcome of activating an internal pathway for cell suicide (a programmed death). That cells can participate in their own execution may indicate that certain types of cell deaths that were previously considered to be caused by foreign agents such as pathogens or drugs may actually result from the activation of a programmed cell death pathway that is normally latent in cells. Here, we describe the activation of such a cell suicide pathway in plant cells upon the recognition of an invading pathogen. We discuss the possible use of this pathway as a defense mechanism against infection and the possibility that in many ways the use of this type of cell death in plants is functionally analogous to that used by mammalian cells in response to infection by pathogens. Dev. Genet. 21:279–289, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
An Arabidopsis cell death mutation locus was mapped to chromosome 2 between /GS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.  相似文献   

10.
Regulators of cell death in disease resistance   总被引:17,自引:0,他引:17  
Cell death and disease resistance are intimately connected in plants. Plant disease resistance genes (R genes) are key components in pathogen perception and have a potential to activate cell death pathways. Analysis of R proteins suggests common molecular mechanisms for pathogen recognition and signal emission whereas the subsequent signalling unexpectedly involves a network of pathways of parallel, branching and converging action. Disease resistance signalling mutants have revealed novel types of regulatory proteins whose biochemical functions are still unknown. Accumulation of small molecules such as salicylic acid, reactive oxygen intermediates, and nitric oxide amplifies resistance responses and directs cells to initiate cell death programs. Genetic analyses of lesion mimic mutants provide a glimpse of how cell death thresholds are set via an interplay of positive and negative regulatory components.  相似文献   

11.
Mittler  Ron  Lam  Eric 《Plant molecular biology》1997,34(2):209-221
Programmed cell death (PCD) is activated during the response of multicellular organisms to some invading pathogens. One of the key aspects of this process is the degradation of nuclear DNA which is thought to facilitate the recycling of DNA from dead cells. The PCD of tobacco plants (genotype NN) infected with tobacco mosaic virus (TMV) is accompanied by the induction of nuclease activities and the cleavage of nuclear DNA to fragments of about 50 kb. We examined the correlation between the increase in nuclease activities and the fragmentation of nuclear DNA during TMV- and bacteria-induced PCD in tobacco. We found that the increase in nuclease activities did not always correlate with fragmentation of nuclear DNA. Thus, in addition to pathogens that induce PCD, mechanical injury and infiltration of leaves with 1 M sucrose or bacteria that did not induce PCD also resulted in an increase in nuclease activities. Analysis of nuclease activities in total leaf extracts, nuclear extracts, and intercellular fluid (i.e., apoplast) revealed that at least four different nuclease activities are induced during PCD in tobacco; of these at least three appear to be secreted into the intercellular fluid. Although the latter were also induced in response to treatments that did not result in DNA fragmentation, they may function in the recycling of plant DNA during late stages of PCD when the integrity of the plasma membrane is compromised. This suggestion is supported by the finding that DNA degradation occurred late during TMV-induced PCD in tobacco. In addition, the finding of induced nuclease activities in the intercellular fluid raises the possibility that they may serve a protective function by degrading the DNA of invading pathogens.  相似文献   

12.
Fine-mapping of an Arabidopsis cell death mutation locus   总被引:2,自引:0,他引:2  
An Arabidopsis cell death mutation locus was mapped to chromosome 2 between lGS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.  相似文献   

13.
Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen ((1)O(2)), a non-radical reactive oxygen species that is restricted to the plastid compartment. Immediately after the shift, plants stop growing and develop necrotic lesions. We have established a protoplast system, which allows detection and characterization of the death response in flu induced by the release of (1)O(2). Vitamin B6 that quenches (1)O(2) in fungi was able to protect flu protoplasts from cell death. Blocking ethylene production was sufficient to partially inhibit the death reaction. Similarly, flu mutant seedlings expressing transgenic NahG were partially protected from the death provoked by the release of (1)O(2), indicating a requirement for salicylic acid (SA) in this process, whereas in cells depleted of both, ethylene and SA, the extent of cell death was reduced to the wild-type level. The flu mutant was also crossed with the jasmonic acid (JA)-depleted mutant opr3, and with the JA, OPDA and dinor OPDA (dnOPDA)-depleted dde2-2 mutant. Analysis of the resulting double mutants revealed that in contrast to the JA-induced suppression of H(2)O(2)/superoxide-dependent cell death reported earlier, JA promotes singlet oxygen-mediated cell death in flu, whereas other oxylipins such as OPDA and dnOPDA antagonize this death-inducing activity of JA.  相似文献   

14.
Ozone: a tool for probing programmed cell death in plants   总被引:27,自引:0,他引:27  
  相似文献   

15.
We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants.  相似文献   

16.
拟南芥干旱突变体远红外成像技术的筛选和特性鉴定   总被引:2,自引:0,他引:2  
利用化学诱变剂甲基磺酸乙酯(EMS)对模式植物拟南芥(Arabidopsis thaliana)进行化学诱变获得突变体筛选群体。在干旱胁迫下,以叶片的温度差异为筛选指标,利用远红外成像技术进行突变体的筛选,获得了对干旱不敏感突变体dri1(drought-insensitive 1)和敏感突变体drs1(drought-sensitive 1)。实验结果表明dri1和drs1为单基因隐性突变,气孔密度同野生型无差异,而叶片温度、气孔开度和叶片失水率则有明显改变。在MS培养基上的种子萌发实验表明在ABA、甘露醇和NaCl胁迫下dri1萌发率要比野生型高,而drs1则比野生型低。对突变基因的研究有待进一步进行。  相似文献   

17.
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.  相似文献   

18.
We have recently described Arabidopsis cell suspension cultures that can be effectively synchronised. Here, we describe procedures that allow clonal-transformed cell suspension lines to be produced using Agrobacterium-mediated transformation, and an optimised and straightforward procedure for the cryopreservation and recovery of both parental and transformed lines. Frozen cultures show 90% viability and rapid re-growth after recovery. We show that the cryopreservation procedure is equally applicable to the frequently used tobacco bright yellow (BY)2 cell suspension culture, and that cell cycle synchronisation capacity of parental lines is maintained after both transformation and recovery from cryopreservation. The techniques require no specialised equipment, and are suitable for routine laboratory use, greatly facilitating the handling and maintenance of cell cultures and providing security against both contamination and cumulative somaclonal variation. Finally, the ability to store easily large numbers of transformed lines opens the possibility of using Arabidopsis cell suspension cultures for high-throughput analysis.  相似文献   

19.
Signalling and cell death in ozone-exposed plants   总被引:13,自引:0,他引:13  
Experiments with Arabidopsis mutants and sensitive and tolerant pairs in several other species have elucidated the molecular basis of plant ozone sensitivity and ozone lesion development. They have indicated an important role for hormonal signalling in determining the outcome of ozone challenge at the cellular level. The reactive oxygen species (ROS) from ozone degradation can cause either direct necrotic damage or induce the process of programmed cell death. Perception of ozone or ROS from its degradation in the apoplast activates several signal transduction pathways that regulate the responses of the cells to the increased oxidative load. Plant hormones salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in determining the duration and extent of ozone-induced cell death and its propagation. Salicylic acid is required for the programmed cell death, ethylene promotes endogenous ROS formation and lesion propagation, and jasmonic acid is involved in limiting the lesion spreading. Abscisic acid is most likely involved through the regulation of stomata and thus is expected to affect lesion initiation. The roles and interactions of perception of ozone, the immediate downstream responses, hormone biosynthesis and signalling during ozone lesion initiation and formation are reviewed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号