首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rolling-circle replication is initiated by a replicon-encoded endonuclease which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5′ end of the DNA at the nick and providing a 3′ hydroxyl to prime unidirectional, leading-strand synthesis. Parvoviruses, such as minute virus of mice (MVM), have adapted this mechanism to amplify their linear single-stranded genomes by using hairpin telomeres which sequentially unfold and refold to shuttle the replication fork back and forth along the genome, creating a continuous, multimeric DNA strand. The viral initiator protein, NS1, then excises individual genomes from this continuum by nicking and reinitiating synthesis at specific origins present within the hairpin sequences. Using in vitro assays to study ATP-dependent initiation within the right-hand (5′) MVM hairpin, we have characterized a HeLa cell factor which is absolutely required to allow NS1 to nick this origin. Unlike parvovirus initiation factor (PIF), the cellular complex which activates NS1 endonuclease activity at the left-hand (3′) viral origin, the host factor which activates the right-hand hairpin elutes from phosphocellulose in high salt, has a molecular mass of around 25 kDa, and appears to bind preferentially to structured DNA, suggesting that it might be a member of the high-mobility group 1/2 (HMG1/2) protein family. This prediction was confirmed by showing that purified calf thymus HMG1 and recombinant human HMG1 or murine HMG2 could each substitute for the HeLa factor, activating the NS1 endonuclease in an origin-specific nicking reaction.  相似文献   

2.
Minute virus of mice (MVM) replicates via a linearized form of rolling-circle replication in which the viral nickase, NS1, initiates DNA synthesis by introducing a site-specific nick into either of two distinct origin sequences. In vitro nicking and replication assays with substrates that had deletions or mutations were used to explore the sequences and structural elements essential for activity of one of these origins, located in the right-end (5') viral telomere. This structure contains 248 nucleotides, most-favorably arranged as a simple hairpin with six unpaired bases. However, a pair of opposing NS1 binding sites, located near its outboard end, create a 33-bp palindrome that could potentially assume an alternate cruciform configuration and hence directly bind HMG1, the essential cofactor for this origin. The palindromic nature of this sequence, and thus its ability to fold into a cruciform, was dispensable for origin function, as was the NS1 binding site occupying the inboard arm of the palindrome. In contrast, the NS1 site in the outboard arm was essential for initiation, even though positioned 120 bp from the nick site. The specific sequence of the nick site and an additional NS1 binding site which directly orients NS1 over the initiation site were also essential and delimited the inboard border of the minimal right-end origin. DNase I and hydroxyl radical footprints defined sequences protected by NS1 and suggest that HMG1 allows the NS1 molecules positioned at each end of the origin to interact, creating a distortion characteristic of a double helical loop.  相似文献   

3.
The parvovirus minute virus of mice (MVM) packages predominantly negative-sense single strands, while its close relative LuIII encapsidates strands of both polarities with equal efficiency. Using genomic chimeras and mutagenesis, we show that the ability to package positive strands maps not, as originally postulated, to divergent untranslated regions downstream of the capsid gene but to the viral hairpins and predominantly to the nick site of OriR, the right-end replication origin. In MVM, the sequence of this site is 5'-CTAT(black triangle down)TCA-3', while in LuIII a two-base insertion (underlined) changes it to 5'-CTATAT(black triangle down)TCA-3'. Matched LuIII genomes differing only at this position (designated LuIII and LuDelta2) packaged 47 and <8% positive-sense strands, respectively. OriR sequences from these viruses were both able to support NS1-mediated nicking in vitro, but initiation efficiency was consistently two- to threefold higher for LuDelta2 derivatives, suggesting that LuIII's ability to package positive strands is determined by a suboptimal right-end origin rather than by strand-specific packaging sequences. These observations support a mathematical "kinetic hairpin transfer" model, previously described by Chen and colleagues (K. C. Chen, J. J. Tyson, M. Lederman, E. R. Stout, and R. C. Bates, J. Mol. Biol. 208:283-296, 1989), that postulates that preferential excision of particular strands is solely responsible for packaging specificity. By analyzing replicative-form (RF) DNA generated in vivo during LuIII and LuDelta2 infections, we extend this model, showing that positive-sense strands do accumulate in LuDelta2 infections as part of duplex RF DNA, but these do not support packaging. However, replication is biphasic, so that accumulation of positive-sense strands is ultimately suppressed, probably because the onset of packaging removes newly displaced single strands from the replicating pool.  相似文献   

4.
Directed integration of minute virus of mice DNA into episomes.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Corsini  J Tal    E Winocour 《Journal of virology》1997,71(12):9008-9015
Recent studies with adeno-associated virus (AAV) have shown that site-specific integration is directed by DNA sequence motifs that are present in both the viral replication origin and the chromosomal preintegration DNA and that specify binding and nicking sites for the viral regulatory Rep protein. This finding raised the question as to whether other parvovirus regulatory proteins might direct site-specific recombination with DNA targets that contain origin sequences functionally equivalent to those described for AAV. To investigate this question, active and inactive forms of the minute virus of mice (MVM) 3' replication origin, derived from a replicative-form dimer-bridge intermediate, were propagated in an Epstein-Barr virus-based shuttle vector which replicates as an episome in a cell-cycle-dependent manner in mammalian cells. Upon MVM infection of these cells, the infecting genome integrated into episomes containing the active-origin sequence reported to be efficiently nicked by the MVM regulatory protein NS1. In contrast, MVM did not integrate into episomes containing either the inactive form of the origin sequence reported to be inefficiently nicked by NS1 or the active form from which the NS1 consensus nick site had been deleted. The structure of the cloned MVM episomal recombinants displayed several features previously described for AAV episomal and chromosomal recombinants. The findings indicate that the rules which govern AAV site-specific recombination also apply to MVM and suggest that site-specific chromosomal insertions may be achievable with different autonomous parvovirus replicator proteins which recognize binding and nicking sites on the target DNA.  相似文献   

5.
6.
The minute virus of mice initiator protein, NS1, excises new copies of the left viral telomere in a single sequence orientation, dubbed flip, during resolution of the junction between monomer genomes in palindromic dimer intermediate duplexes. We examined this reaction in vitro using both (32)P-end-labeled linear substrates and similar unlabeled templates labeled by incorporation of [alpha-(32)P]TTP during the synthesis. The observed products suggest a resolution model that explains conservation of the hairpin sequence and in which a novel heterocruciform intermediate plays a crucial role. In vitro, NS1 initiates two replication pathways from OriL(TC), the single active origin embedded in one arm of the dimer junction. NS1-mediated nicking liberates a base-paired 3' nucleotide to prime DNA synthesis and, in a reaction we call "read-through synthesis," forks established while the substrate is a linear duplex synthesize DNA in the flop orientation, leading to DNA amplification but not to junction resolution. Nicking leaves NS1 covalently attached to the 5' end of the DNA, where it can serve as a 3'-to-5' helicase, unwinding the NS1-associated strand. In the second pathway, resolution substrates are created when such unwinding induces the palindrome to reconfigure into a cruciform prior to fork assembly. New forks can then synthesize DNA in the flip orientation, copying one cruciform arm and creating a heterocruciform intermediate. Resolution proceeds via hairpin transfer in the extended arm of the heterocruciform, which releases one covalently closed duplex telomere and a partially single-stranded junction intermediate. We suggest that the latter intermediate is finally resolved via an NS1-induced single-strand nick at the otherwise inactive origin, OriL(GAA).  相似文献   

7.
The terminal hairpin structures of the DNA of minute virus of mice (MVM) are essential for viral replication. Here we show that the hairpin 3' terminus of MVM replicative-form DNA binds specifically to empty MVM capsids. Binding of the same terminal DNA sequence in its linear double-stranded (extended) conformation was not observed. After heat denaturation and quick cooling of 3'-terminal extended-form fragments, not only the virion strand but also the complementary strand was found to bind to the capsid, presumably because each strand re-formed a similar hairpin structure. No binding affinity for the capsid was found to be associated with hairpin or extended 5' termini or with any other region of the viral DNA. Hydroxyl radical footprinting analyses revealed three protected nucleotide stretches forming a binding site at the branch point of the two 3'-terminal hairpin arms looping out from the DNA stem (T structure). Single base changes within this site did not affect the binding. In band shift experiments, specific binding to the T structure was demonstrated for VPI but not for VP2.  相似文献   

8.
9.
Molecular characterization of a newly recognized mouse parvovirus.   总被引:4,自引:1,他引:3       下载免费PDF全文
Mouse parvovirus (MPV), formerly known as orphan parvovirus, is a newly recognized rodent parvovirus distinct from both serotypes of minute virus of mice (MVM). Restriction analysis of the MPV genome indicated that many restriction sites in the capsid region were different from those of MVM, but most sites in the nonstructural (NS) region of the genome were conserved. MPV resembled MVM in genome size, replication intermediates, and NS proteins. Replication intermediates in infected cells were the same for MPV and MVM, including packaging of the 5-kb minus (V) strand. Furthermore, the MPV NS proteins were the same size as and present at the same ratio as the MVM(i) proteins in infected cells. Cloning and sequencing of the MPV genome revealed a genome organization closely resembling that of MVM, with conservation of open reading frames, promoter sequences, and splice sites. The left terminal hairpin was identical to that of MVM(i), but the right terminus was not conserved. Also, the MPV genome was unique in that it contained 1.8 copies of the terminal repeat sequence rather than the 1 or 2 copies found in other parvoviruses. The predicted amino acid sequence of the NS proteins of MPV and MVM(i) were nearly identical. In contrast, the predicted amino acid sequence of the capsid proteins of MPV was different from sequences of other parvoviruses. These results confirm that MPV is a distinct murine parvovirus and account for the antigenic differences between MPV and MVM.  相似文献   

10.
S L Rhode  III 《Journal of virology》1977,21(2):694-712
The linear duplex replicative form (RF) DNA of the parvovirus H-1 has been characterized with respect to cleavage by the bacterial restriction endonuclease of Escherichia coli, EcoRI. RF DNA has a single cleavage site 0.22 genome length from the left end of the molecule. The molecular weight of H-1 RF DNA determined by gel electrophoresis is 3.26 X 10(6). H-1 RF DNA has been found to dimerize by hydrogen-bounded linkage at the molecular left end, and in some molecules the viral strand is covalently linked to the complementary strand. Some 10% of monomeric RF DNA also has a covalent linkage between the viral and complementary strands at the left end. The EcoRI-B fragment, containing the left end of the RF molecule, appears to be a replication terminus by its labeling characteristics for both RF and progeny DNA synthesis. These findings suggest that the left end of H-1 RF DNA has some type of "turn-around" structure and that this end is not an origin for DNA synthesis.  相似文献   

11.
L K Naeger  J Cater    D J Pintel 《Journal of virology》1990,64(12):6166-6175
Seven mutations which affect only the small nonstructural protein NS2 were introduced into the infectious clone of the autonomous parvovirus, minute virus of mice (MVM). The majority of these mutants were severely defective for replication following transfection of normal host murine A9 fibroblasts; however, all were found to replicate more efficiently and produce infectious virus in certain other cell types, including human NB324K. The isolation of viral stocks from NB324K cells permitted a more detailed analysis of the mutant defect on A9 cells. NS2 mutant NS2-2018 was shown to be approximately 10-fold deficient for viral monomer replicative-form DNA production within a single-burst cycle in infected A9 cells and produced a reduced amount of progeny single strand. Mutant NS2-2018 generated wild-type levels of monomer replicative-form DNA on NB324K cells but made reduced levels of progeny single strand and small plaques on these cells. The accumulation of NS1 is reduced late in NS2-2018 infection of A9 cells, but NS1 accumulates to wild-type levels late in NB324K cell infections. NS1 nuclear localization is not dependent on NS2 in A9 or NB324K cells. These results indicate that NS2 participates in MVM DNA replication and is required for efficient viral growth. The requirement for NS2 during MVM replication is also host cell specific. This requirement is significantly more pronounced in the normal host murine A9 cells than in certain other cell types, including NB324K.  相似文献   

12.
13.
Autonomous parvovirus minute virus of mice (MVM) DNA replication is strictly dependent on cellular factors expressed during the S phase of the cell cycle. Here we report that MVM DNA replication proceeds in specific nuclear structures termed autonomous parvovirus-associated replication bodies, where components of the basic cellular replication machinery accumulate. The presence of DNA polymerases alpha and delta in these bodies suggests that MVM utilizes partially preformed cellular replication complexes for its replication. The recruitment of cyclin A points to a role for this cell cycle factor in MVM DNA replication beyond its involvement in activating the conversion of virion single-stranded DNA to the duplex replicative form.  相似文献   

14.
Human bocavirus is a newly identified, globally prevalent, parvovirus that is associated with respiratory infection in infants and young children. Parvoviruses encode a large nonstructural protein 1 (NS1) that is essential for replication of the viral single-stranded DNA genome and DNA packaging and may play versatile roles in virus-host interactions. Here, we report the structure of the human bocavirus NS1 N-terminal domain, the first for any autonomous parvovirus. The structure shows an overall fold that is canonical to the histidine-hydrophobic-histidine superfamily of nucleases, which integrates two distinct DNA-binding sites: (i) a positively charged region mediated by a surface hairpin (residues 190 to 198) that is responsible for recognition of the viral origin of replication of the double-stranded DNA nature and (ii) the nickase active site that binds to the single-stranded DNA substrate for site-specific cleavage. The structure reveals an acidic-residue-rich subdomain that is present in bocavirus NS1 proteins but not in the NS1 orthologs in erythrovirus or dependovirus, which may mediate bocavirus-specific interaction with DNA or potential host factors. These results provide insights into recognition of the origin of replication and nicking of DNA during bocavirus genome replication. Mapping of variable amino acid residues of NS1s from four human bocavirus species onto the structure shows a scattered pattern, but the origin recognition site and the nuclease active site are invariable, suggesting potential targets for antivirals against this clade of highly diverse human viruses.  相似文献   

15.
A partially purified preparation of DNA polymerase alpha, obtained from the cytosol of Ehrlich ascites tumour cells, has been found to catalyze the conversion of MVM parvovirus, SS DNA (5 kilobases) to RF in vitro. The reaction initiates at a natural 55 base pair hairpin which exists at the 3' terminus of MVM SS DNA. The SS leads to RF conversion is sensitive to aphidicolin, resistant to ddTTP and is promoted by purine ribonucleoside 5' triphosphates, a phenomenon which could not be explained simply by stabilization effects on the in vitro deoxynucleotide precursor pool. In the absence of rNTPs, nascent complementary strands frequently terminate prematurely at a preferred location, between 1300 and 1700 nucleotides from the initiating 3' hairpin terminus. This in vitro system, involving self-primed parvovirus DNA synthesis, provides a convenient assay for those components of the mammalian replicative DNA polymerase complex which are required for the elongation of nascent DNA chains.  相似文献   

16.
The effect of UV-irradiation on the conversion of the single-stranded DNA of the parvovirus Minute-Virus-of-Mice (MVM) to duplex Replicative Forms (RF) was studied after infection of mouse A9 fibroblasts. UV-irradiation of the virus prior to infection of unirradiated cells resulted in a dose-dependent, single-hit, inhibition of RF formation. Restriction fragment analysis indicated that this inhibition could be ascribed to the introduction of absolute blocks which prevent elongation of the newly synthesized complementary strand. Cell exposure to UV-light prior to infection with UV-irradiated MVM enhanced the fraction of input viral DNA which was converted to RF. This enhancement required de novo protein synthesis during the interval between cell irradiation and virus infection. These results suggest that DNA replication constitutes a target in the viral life cycle that leads to the UV-enhanced Reactivation of virus survival, however, they do not permit us to identify the step of RF formation which is enhanced in UV-pretreated cells.  相似文献   

17.
18.
Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.  相似文献   

19.
A novel human site-specific DNA-binding factor has been partially purified from extracts of HeLa S3 cells. This factor, designated PIF, for parvovirus initiation factor, binds to the minimal origin of DNA replication at the 3' end of the minute virus of mice (MVM) genome and functions as an essential cofactor in the replication initiation process. Here we show that PIF is required for the viral replicator protein NS1 to nick and become covalently attached to a specific site in the origin sequence in a reaction which requires ATP hydrolysis. DNase I and copper ortho-phenanthroline degradation of the PIF-DNA complexes showed that PIF protects a stretch of some 20 nucleotides, covering the entire region in the minimal left-end origin not already known to be occupied by NS1. Methylation and carboxy-ethylation interference analysis identified two ACGT motifs, spaced by five nucleotides, as the sequences responsible for this binding. A series of mutant oligonucleotides was then used as competitive inhibitors in gel mobility shift assays to confirm that PIF recognizes both of these ACGT sequences and to demonstrate that the two motifs comprise a single binding site rather than two separate sites. Competitive inhibition of the origin nicking assay, using the same group of oligonucleotides, confirmed that the same cellular factor is responsible for both mobility shift and nicking activities. UV cross-linking and relative mobility assays suggest that PIF binds DNA as a heterodimer or higher-order multimer with subunits in the 80- to 100-kDa range.  相似文献   

20.
The replication initiator protein (gene II protein (gpII] of bacteriophage f1 is a multifunctional protein that plays central roles in initiation and termination of phage DNA replication. It introduces a nick at a specific site on the (+)-strand of supercoiled replicative form DNA. The 3'-hydroxyl end of the nick serves as the primer for (+)-strand rolling-circle replication. Upon completion of a round of synthesis, gpII cleaves and circulaizes the displaced single strand. When Mn2+ is included in the buffer instead of Mg2+, gpII cleaves both strands. In this paper, we investigate the mechanism of the Mn2+-dependent double-strand cleavage activity of gpII. This reaction, unlike nicking in the presence of Mg2+, does not require superhelicity. The reaction proceeds in two kinetic steps: first nicking of the (+)-strand, and then cleavage of the (-)-strand. The nucleotide sequence requirement for nicking is reduced compared to that in the presence of Mg2+. The product of the double-strand cleavage has an unusual structure. The left end is a telomere-like hairpin since the (+)- and (-)-strands are joined, as demonstrated by base sequencing. The right end has a onebase 3'-overhang. This reaction probably reflects the cleavage-joining activity of gpII in the termination event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号