首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
S Brown 《Journal of bacteriology》1991,173(5):1835-1837
4.5S RNAs of eubacteria and 7S RNAs of archaebacteria and eukaryotes exist in a hairpin conformation. The apex of this hairpin displays structural and sequence similarities among both 4.5S and 7S RNAs. Furthermore, a hyphenated sequence of 16 nucleotides is conserved in all eubacterial 4.5S RNAs examined. In this article I report that 7S RNAs that contain this 16-nucleotide sequence are able to replace 4.5S RNAs and permit growth of Escherichia coli.  相似文献   

2.
4.5 S RNA, a biologically stable species with electrophoretic properties intermediate between 5 S and transfer RNAs, has been isolated from Escherichia coli and characterized. No function has yet been found for this molecule. Its primary structure and behavior suggests an unusually stable and possibly unique secondary structure. Even from single species of E. coli, there is some sequence heterogeneity within the molecule. The sequence of a major species from MRE 600 is: (see article). Methods for getting sequence overlaps on this highly structured RNA are described, and a possible functional role for 4.5 S RNA is discussed.  相似文献   

3.
4.
The 4.5 S RNA gene of Escherichia coli is essential for cell growth   总被引:22,自引:0,他引:22  
The Escherichia coli gene coding for the metabolically stable 4.5 S RNA (ffs) has been shown to be required for cell viability. Essentiality was demonstrated by examining the recombination behavior of substitution mutations of ffs generated in vitro. Substitution mutants of ffs are able to replace the chromosomal allele only in the presence of a second, intact copy of ffs. Independent evidence of essentiality and the finding that 4.5 S RNA is important for protein synthetic activity came from characterization of cells dependent on the lac operon inducer isopropyl-beta-D-thiogalactoside for ffs gene expression. Here, a strain dependent on isopropyl-beta-D-thiogalactoside for 4.5 S RNA synthesis was developed by inactivation of the chromosomal ffs allele and lysogenization by a lambda phage containing 4.5 S DNA fused to a hybrid trp-lac promoter. Withdrawal of the thiogalactoside leads to a deficiency in 4.5 S RNA, a dramatic loss in protein synthesis activity, and eventual cell death. Tagging of the chromosomal ffs region with a kanamycin-resistance gene allowed mapping of the 4.5 S RNA gene. Results from this analysis place ffs near lon at approximately ten minutes on the E. coli linkage map.  相似文献   

5.
Time of action of 4.5 S RNA in Escherichia coli translation   总被引:15,自引:0,他引:15  
A new class of suppressor mutants helps to define the role of 4.5 S RNA in translation. The suppressors reduce the requirement for 4.5 S RNA by increasing the intracellular concentration of uncharged tRNA. Suppression probably occurs by prolonging the period in which translating ribosomes have translocated but not yet released the uncharged tRNA, indicating that this is the point at which 4.5 S RNA enters translation. The release of 4.5 S RNA from polysomes is affected by antibiotics that inhibit protein synthesis. The antibiotic-sensitivity of this release indicates that 4.5 S RNA exits the ribosome following translocation and prior to release of protein synthesis elongation factor G. These results indicate that 4.5 S RNA acts immediately after ribosomal translocation. A model is proposed in which 4.5 S RNA stabilizes the post-translocation state by replacing 23 S ribosomal RNA as a binding site for elongation factor G. The 4.5 S RNA-requirement of mutants altered in 23 S ribosomal RNA support this model.  相似文献   

6.
We examined the synthesis of individual proteins following depletion of 4.5S RNA by using a strain deficient in the induction of heat shock proteins. We found that initially the synthesis of all proteins was equally affected, and the peptide elongation rate was reduced by approximately 10%. For up to 1 generation time after the onset of inhibition of total protein synthesis, the processing of secreted proteins was unaffected. After further depletion of 4.5S RNA, accumulation of precursors of secreted proteins was observed under some growth conditions.  相似文献   

7.
8.
Escherichia coli 4.5S RNA is a member of the signal recognition particle RNA family that binds to Ffh and EF-G proteins in vivo. To assess the binding affinity of E. coli 4.5S RNA, wild-type Ffh and a series of amino terminal truncated EF-G mutants with a histidine tag were over-expressed in Escherichia coli and purified. Among them, EF-G mutants with a deletion of all upstream sequences up to and including the second or the third GTP binding sequence element were expressed at high levels and bound with the same activity as wild-type EF-G. Nitrocellulose filter binding assays revealed that the binding affinity values (M(1/2)) for Ffh and EF-G, defined as the concentration giving half-maximal binding, were 0.15 microM and 1.5 microM, respectively. Moreover, we also show that very little EF-G can form a stable complex with 4.5S RNA in vivo, whereas almost all Ffh binds to 4.5S RNA.  相似文献   

9.
An Escherichia coli strain with a deletion in the ssrA gene that encodes 10Sa RNA (tmRNA) was used to screen for temperature-sensitive (ts) mutants whose ts phenotypes were suppressible by introduction of the wild-type ssrA gene. Mutants in four different genes were isolated. Ts mutants of this type were also obtained in a screen for mutations in thyA, the structural gene for thymidylate synthase. The ThyA activity in crude extracts prepared from the ts mutants was temperature-sensitive. The presence of the ssrA gene caused an increase in the total amount of the temperature-sensitive enzyme expressed, rather than suppressing the ts activity of the enzyme itself. SsrA-DD, a mutant form of 10Sa RNA, suppressed the ts phenotype of a thyA mutant, suggesting that degradation of a tagged peptide was not required for suppression of the ts phenotype. Considering the fact that ssrA-suppressible mutants could be isolated as temperature-sensitive mutants with mutations in different genes, it seems evident that trans-translation can occur on mRNA that is not lacking its stop codon.  相似文献   

10.
The 4.5S RNA gene from Pseudomonas aeruginosa.   总被引:2,自引:3,他引:2       下载免费PDF全文
  相似文献   

11.
4.5S RNA is the bacterial homolog of the mammalian signal recognition particle (SRP) RNA that targets ribosome-bound nascent peptides to the endoplasmic reticulum. To explore the interaction of bacterial SRP with the ribosome, we have isolated rRNA suppressor mutations in Escherichia coli that decrease the requirement for 4.5S RNA. Mutations at C732 in 16S rRNA and at A1668 and G1423 in 23S rRNA altered the cellular responses to decreases in both Ffh (the bacterial homolog of SRP54) and 4.5S RNA levels, while the C1066U mutation in 16S rRNA and G424A mutation in 23S rRNA affected the requirement for 4.5S RNA only. These data are consistent with a dual role for 4.5S RNA, one involving co-translational protein secretion by a 4.5S-Ffh complex, the other involving free 4.5S RNA.  相似文献   

12.
We measured the concentrations of both 4.5S RNA and Ffh protein under a variety of growth conditions and found that there were 400 molecules of 4.5S RNA per 10,000 ribosomes in wild-type cells and that the concentration of Ffh protein was one-fourth of that. This difference in concentration is 1 order of magnitude less than that previously reported but still significant. Pulse-chase labeling experiments indicated that Ffh protein is unstable in cells carrying ffh on high-copy-number plasmids and that simultaneous overproduction of 4.5S RNA stabilizes Ffh protein. Our analyses show that free Ffh protein is degraded with a half-life of approximately 20 min. We also tested whether three previously isolated suppressors of 4.5S RNA deficiency could reduce the requirement for Ffh protein. Since the two sffE suppressors do not suppress the Ffh requirement, we suggest that 4.5S RNA either acts in a sequential reaction with Ffh or has two functions.  相似文献   

13.
14.
Small cytoplasmic RNA (scRNA; 271 nucleotides) is an abundant and stable RNA of the gram-positive bacterium Bacillus subtilis. To investigate the function of scRNA in B. subtilis cells, we developed a strain that is dependent on isopropyl-beta-D-thiogalactopyranoside for scRNA synthesis by fusing the chromosomal scr locus with the spac-1 promoter by homologous recombination. Depletion of the inducer leads to a loss of scRNA synthesis, defects in protein synthesis and production of alpha-amylase and beta-lactamase, and eventual cell death. The loss of the scRNA gene in B. subtilis can be complemented by the introduction of human signal recognition particle 7S RNA, which is considered to be involved in protein transport, or Escherichia coli 4.5S RNA. These results provide further evidence for a functional relationship between B. subtilis scRNA, human signal recognition particle 7S RNA, and E. coli 4.5S RNA.  相似文献   

15.
During depletion of 4.5S RNA, cells of Escherichia coli displayed a heat shock response that was simultaneous with the first detectable effect on ribosome function and before major effects on cell growth. Either 4.5S RNA is involved directly in regulating the heat shock response, or this particular impairment of protein synthesis uniquely induces the heat shock response. Several hours later, lambda prophage was induced and the cells lysed.  相似文献   

16.
To more clearly understand the function of conserved bases of 4.5S RNA, the product of the essential ffs gene of Escherichia coli, and to address conflicting results reported in other studies, we have developed a new genetic system to characterize ffs mutants. Multiple ffs alleles were generated by altering positions that correspond to the region of the RNA molecule that interacts directly with Ffh in assembly of the signal recognition particle. To facilitate characterization of the ffs mutations with minimal manipulation, recombineering was used to construct new F' factors to easily move each allele into different genetic backgrounds for expression in single copy. In combination with plasmids that expressed ffs in multiple copy numbers, the F' factors provided an accurate assessment of the ability of the different 4.5S RNA mutants to function in vivo. Consistent with structural analysis of the signal recognition particle (SRP), highly conserved bases in 4.5S RNA are important for binding Ffh. Despite the high degree of conservation, however, only a single base (C62) was indispensable for RNA function under all conditions tested. To quantify the interaction between 4.5S RNA and Ffh, an assay was developed to measure the ability of mutant 4.5S RNA molecules to copurify with Ffh. Defects in Ffh binding correlated with loss of SRP-dependent protein localization. Real-time quantitative PCR was also used to measure the levels of wild-type and mutant 4.5S RNA expressed in vivo. These results clarify inconsistencies from prior studies and yielded a convenient method to study the function of multiple alleles.  相似文献   

17.
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.  相似文献   

18.
19.
R Kraft  L Kadyk  L A Leinwand 《Genomics》1992,12(3):555-566
The rodent 4.5 S RNA is an RNA polymerase III product with a sequence related to the Alu family of interspersed repeated DNA. A previous study identified a tandem array of 4.2-kb repeating units that contain the 4.5 S RNA coding sequence as well as many short repetitive sequences. To understand the genomic organization of this gene family, we have isolated and characterized 4.5 S RNA sequences that are part of the tandem array as well as identified members that are not part of the array. One variant 4.5 S RNA gene family member exhibits length polymorphisms in its minisatellite sites relative to the single previously reported gene. The 4.5 S RNA sequences that are not part of the tandem array possess many of the features of processed pseudogenes and are found adjacent to other interspersed repeated elements. These findings suggest that the mouse 4.5 S RNA can behave as a retroposon, resulting in the accumulation of 4.5 S RNA-like elements at many sites in the genome.  相似文献   

20.
Transformation of Escherichia coli is a basic technique for genetic engineering. We used a liposome-mediated lipofection method to transform electrocompetent E. coli cells which has little natural competence of foreign DNA without electroporation treatment, and got transformants with simple and quick treatment by a plasmid or a transposon and transposase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号