首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract:  In laboratory bioassays, the efficacy of the entomopathogenic fungus Beauveria bassiana against the spruce bark beetle, Ips typographus , was tested under various conditions. Four of the tested isolates and the commercial product Boverol® caused 99–100% mortality when tested at a concentration of 1.0 × 107 conidia/ml at 25°C. Using B. bassiana isolate 138 at a concentration of 1.0 × 106, the median survival time (MST) was 6.1 d and significantly longer compared with the MST of 4.2 and 4.0 d at 1.0 × 107 and 1.0 × 108 conidia/ml, respectively. In the next experiment, the beetles were maintained on spruce bark, filter paper or artificial diet during the bioassay with Boverol®, and significant differences in the MST of 3.6, 2.5 and 5.3 d, respectively, were noticed. The experiment with Boverol® at different temperatures showed that the beetles lived significantly longer at 15°C (MST 8.7 d) than at 20, 25, 30 and 35°C. At 25°C, the beetles died most rapidly (MST 3.5 d). At different relative humidities (RH) of 40, 70 and 100%, nearly all beetles were dead after treatment with a suspension of Boverol® at 1.0 × 107 conidia/ml. At 40% RH, 49% of the untreated beetles died after 7 d. The best effects were achieved with the following bioassay: beetles were fed for three days on artificial diet, then dipped into a solution of 1.0 × 107 conidia/ml and transferred on a piece of spruce bark in Petri dishes at 25°C and 70% RH.  相似文献   

2.
Chlorophyllous, cultured cells of Marchantia polymorpha L. (HYA-2 cell line) grow actively under photoautotrophic (lithotrophic) conditions. The maximum specific growth rate (μcell) was 0.64 day−1 and the doubling time was 1.08 days under optimum conditions (165 μmol m−2 s−1, 1% carbon dioxide enriched atmosphere, 25°C). The photosynthetic activity was 1.30 μmol CO2-fixed (106 cells)−1 h−1 [66 μmol (mg chlorophyll)−1 h−1] in the exponential phase. The growth course has two distinct phases, an exponential and a linear one. The exponential phase is observed as long as the population density is sufficiently low (less than 7.9 × 106 cells ml−1), so that practically all individual cells directly receive the full incident light. The effect of light on the specific growth rate is a linear function of photon flux density. Linear growth occurs after the population density is so high that the incident light is almost completely absorbed by the cell suspension. The growth rate is a logarithmic function of photon flux density, in contrast to the specific growth rate, and saturates at high photon flux densities. The conditions of maximum growth, however, are not wellbalanced between cell mass production and cell division. Therefore, the maximum growth does not continue for a long time.  相似文献   

3.
SUMMARY. The oxygen consumption of shrimps ranging from 1 to 30 mg dry mass was determined at 18, 24 and 30°C using a continuous flow recording respirometer based upon a Clark-type oxygen electrode. Respiration (ascribed to routine metabolism) is described by the power curve: R = a Mb , ( R =μg O2 h−1, M = mg dry mass), which gives values of a = 1.632, 2.564 and 4.181, and b = 0.800, 0.898, and 0.793, at 18, 24 and 30°C respectively. The single expression, R = 0.008 T 1.829 M 0.830 provides a reasonable prediction of respiration as a combined function of shrimp size ( M ) and temperature (T, °C). Using an energy equivalent of 14.14 J mg O2−1 estimates of the energy requirements ( E , J h−1 10−3) of routine metabolism are given by the expression: E = 0.115 T 1.829 M 0.830.
Variability in oxygen consumption values between individuals is discussed and the observations on C. nilotica are compared with other crustacean studies.  相似文献   

4.
The photosynthetic and growth characteristics of Ceratophyllum demersum L. were investigated under laboratory conditions which simulated those encountered in the plants' normal environment. The carbon fixation rate of C. demersum measured with 14C at light and carbon saturation at pH 8.0 was 4.48 mg C (g ash-free dry weight)−1 h−1. It was lower at pH 6.5 than at pH 8.0. The light use efficiencies in quiescent plants and actively growing plants were 6.3 and 8.7 × 10−9 kg CO2 J−1, respectively, with corresponding maximum photosynthetic rates of 2.67 and 4.36 mg C (g ash-free dry weight)−1 h−1. Photorespiration in actively growing plants consumed 24% of the carbon fixed. Incubation with DCMU demonstrated that about one-third was refixed. The optimum temperature for carbon fixation was 25°C. The C3-photosynthetic pathway was the main operational route as indicated by the early photosynthetic products (largely C3-acids) and the absence of Krantz anatomy and the chlorophyll a:b ratio (2.7). The maximum relative growth rates ranged from 0.025 to 0.041 g ash-free dry weight (g ash-free dry weight)−1 day−1 in the field (Lake Vechten, 1 to 3 m depth classes).  相似文献   

5.
The effects of environmental factors on infection of the entomopathogenic fungus, Nomuraea rileyi , isolated from the corn earworm, Helicoverpa armigera , in Taiwan, to its host insect were studied in the laboratory. The fungus caused higher larval mortality at 20°C than at 30°C when 5 × 106 conidia/ml were sprayed on the fourth instar. However, mortality of the fifth instar injected with 1 × 103 conidia/larva was not significantly different when the inoculated larvae were incubated from 15 to 30°C. The fungal development in inoculated larvae was best at 20 and 25°C after shifting from 20°C to either lower or higher temperatures. The germination rate was higher at 20 and 25°C than at 30 or 35°C. Conidial germination was better on the wash-off of insect cuticle than on Sabouraud maltose agar with yeast extract. Sporulation on chill-dried cadavers was maximal at 95 or 100% relative humidity than at lower levels of relative humidity. The time required for sporulation was 2 days less at 100% than at 95% relative humidity. Although photoperiod did not affect fifth instar mortality caused by N. rileyi , the median lethal time (LT50) values were shorter upon incubating under light than in darkness. Incubation of infected cadavers under 12 or 24 h light resulted in 20-fold more conidial production than under full darkness. Therefore, illumination is necessary for development of this isolate on insect cadavers.  相似文献   

6.
Photosynthetic and respiratory response of four Alaskan tundra species comprising three growth forms were investigated in the laboratory using an infrared gas analysis system. Vaccinium vitis-idaea , a dwarf evergreen shrub, demonstrated a low photosynthetic capacity: Pmax= 1 mg CO2 g dry wt−1 h−1; Topt < 10°C. Betula nana , a deciduous shrub, had a high relatively photosynthetic capacity: Pmax= 14 mg CO2 g dry wt−1 h−1; Topt 17°C. Two graminoid (sedge) species, Carex aquatilis and Eriophorum vaginalum , showed different responses. Carex showed a high photosynthetic capacity: Pmax= 20 mg CO2 g dry wt−1 h−1; Topt 22°C. Eriophorum vaginatum demonstrated an intermediate photosynthetic capacity of 4 mg CO2 g dry wt−1 h−1 at saturated light levels. Leaf dark respiration, up to 20°C, was approximately the same for all species. The patterns of root respiration among species was opposite to the trend in photosynthesis. Vaccinium vitis-idaea had the highest rate of root respiration and B. nana the lowest ( C aquatilis was not measured). Correlation between leaf nitrogen content (%) and photosynthetic capacity was high. Hypothesized growth form relationships explained differences in photosynthetic capacity between the deciduous shrub and evergreen shrub, but did little to account for differences between the two sedges. Differences in rooting patterns between species may affect tissue nutrient content, carbon flux rates, and carbon balance.  相似文献   

7.
Turbot Scophthalmus maximus maximum oxygen uptake following feeding and exhaustive exercise increased from 107 mg O2 kg−1 h−1 at 6° C to c . 218 mg O2 kg−1 h−1 at 18° C, then increased slightly from 18 to 22° C to 224 mg O2 kg−1 h−1. Standard oxygen uptake increased exponentially as a function of temperature from 11 mg O2 kg −1 h−1 at 6° C to 66 mg O2 kg−1 h−1 at 22° C. Gradual reduction in oxygen concentration to 87–90% air saturation at 6, 10. 18° C and <80% at 14 and 22° C limited the maximum metabolic rate but, supersaturation (>100% saturation) had little effect. Metabolic scope attained a maximum of 176 mg O2 kg−1 h−1 at 18° C. Interpolation of the results showed that this value changed little between 16 and 20° C. It is suggested that this temperature range is optimal for turbot of c . 500 g. A comparison with a previous study on feeding demand in intensive farming conditions showed a linear relationship between appetite and metabolic scope. It is concluded that the ability of a fish to supply energy (including the energy requirement of digestive metabolism) above a standard level is a limiting factor in the manifestation of its feeding demand.  相似文献   

8.
Spores of psychrotrophic (able to grow at 5°C) aerobic sporeformers occurred in soil in high numbers (2 × 103-5 × 106/g), whereas psychrophilic (able to grow at 0°C) spores were present at significantly lower levels (500–105/g). Psychrotrophic spores were absent in herbs and spices: in pasteurized meals prepared industrially their numbers varied from <10 to 1000/g. For spores harvested from Trypticase Soy Agar (TSA), the heat resistance of the cold-tolerant sporeformers was low with D 90°C-values from 1–11 min. The recovery of heated psychrophilic spores on this medium at 5°C was equal to their recovery at 20°C. However, the recovery of heated psychrotrophic spores was lower at 5°C than at 20°C, whereas unheated spores gave the same counts at both temperatures. The heat resistance of naturally occurring spores of cold-tolerant sporeformers washed from soil was comparable with the resistance of spores formed on TSA.  相似文献   

9.
Burgos cheese was manufactured from pasteurized ewes milk inoculated with Staphylococcus aureus strains FRI 137 and FRI 361, at levels of ca 103 and 105 cfu/ml and stored at 4°, 10° and 15°C and at room temperature (10°-15°C). Populations of Staph. aureus and mesophilic aerobes, pH, and production of thermonuclease and enterotoxins C1 and C2 were investigated. Aerobic counts increased during cheese-making and storage. With both test strains, important growth was observed only during the storage period, the larger levels corresponding to the higher temperatures. Although Staph. aureus strains attained populations of over 108 cfu/g, no enterotoxin was detected. Strain FRI 361 reached 107 cfu/g without production of a detectable amount of thermonuclease. With strain FRI 137, the minimal population associated with enzyme activity was influenced by the inoculum size. Staphylococcus aureus counts are better indicators of staphylococcal growth in Burgos cheese than the thermonuclease test.  相似文献   

10.
Effects of entomopathogenic fungus Verticillium lecanii on biological characteristics and life table of Serangium japonicum , a predator of whiteflies against five different conidial concentrations (1×104, 1×105, 1×106, 1×107, and 1×108 conidia/mL) were studied under laboratory conditions. The developmental periods for all immature stages (from eggs, 1st, 2nd, 3rd, 4th instar nymph and pupae up to emergence) among the treatments were significantly different when compared to that of control, and the longest development period was observed as treated with 1×108 spore/mL. However, no significant difference on the percent survival of all immature stages was observed among the treatments and control. Also, there were no significantly different effects of V. lecanii on mean generation time, intrinsic rate, the finite rate of increase and longevity of S. japonicum among the treatments and control.  相似文献   

11.
Abstract A method was developed for direct extraction, purification and amplification of DNA from forest soil. Eighty-two % of the DNA in Pseudomonas aeruginosa UG2Lr introduced into soil was recovered. The detection limit for the strain was approximately 800 cfu g−1 of dry soil based on the polymerase chain reaction (PCR). Survival of κ-carrageenan-encapsulated and unencapsulated UG2Lr was monitored by antibiotic selective and bioluminescence-based nonselective plating and PCR-amplification of a tnsA fragment. After freeze-thaw treatment of soil samples, the unencapsulated UG2Lr declined from an initial population density of 1 × 109 cfu g−1 of dry soil to below the detection threshold of both selective (14 cfu g−1 of dry soil) and nonselective (1 × 103 cfu g−1 of dry soil) plating. However, presence of nonculturable UG2Lr cells in the soil was revealed by PCR and resuscitation of the bacteria. Population density of the encapsulated UG2Lr increased from 2.7 × 106 to 2.9 × 108 cfu g−1 of dry soil after a 3-week incubation at 22°C and declined to 6.3 × 106 cfu g−1 of dry soil after the freeze-thaw treatment.  相似文献   

12.
Abstract: The rates of ingestion of bacteria and of accumulation of bacterial biomass by hungry Pteridomonas danica and Paraphysomonas imperforata were measured using dual radioactive-labelled bacteria in experiments lasting 4–8 h. Pteridomonas continuously consumed 4–5 bacteria h−1 throughout experiments lasting 8 h, irrespective of bacterial concentration above a threshold of about 5 × 105 bacteria ml−1, and continued to catch bacteria even below this density. The clearance rate of about 1 nl cell−1 h−1 at higher bacterial concentrations increased three or four times as bacterial numbers fell. Paraphysomonas cells, with only half the biomass of Pteridomonas , ingested up to 10 bacteria h−1 at high bacterial concentrations, and gradually reduced the feeding rate, effectively ceasing to feed at 106 bacteria ml−1; their initial clearance rate of 1–2.5 nl cell−1 h−1 subsequently fell as low as 0.1 nl cell−1 h−1. Estimation of feeding rate by extrapolation from short-term experiments on such flagellates requires extreme caution. These flagellates, starved to levels typical of the natural environment, accumulated ingested bacterial biomass at an efficiency of between 16 and 21%, indicating that in nature they would recycle 80% or more of the nutrients contained in their food.  相似文献   

13.
1. Bacterial production in the 0–30 m water column of Loch Ness was measured using a dual labelling procedure with [3H] thymidine and [14C] leucine between May 1993 and June 1994. In most cases the uptake of the two labels did not covary, suggesting unbalanced growth. Rates of bacterial production varied from undetectable to 46.2 μg C l–1 day–1. Highest production coincided with the period of highest primary production, but carbon derived from this source was insufficient to meet the bacterial carbon demand, which was met by allochthonous humic inputs to the system.
2. Heterotrophic flagellate (HNAN) grazing rates, measured using fluorescently labelled bacteria, ranged between 10.3 and 24.5 bacteria cell–1 day–1 at temperatures between 5 and 15 °C. They removed up to 27% of the bacterial production per day.
3. Heterotrophic flagellate specific growth rates ranged from 0.043 to 0.093 h–1 between 5 and 15 °C, giving generation times of 7.4–16.1 h.
4. bacterial and HNAN abundances were not coupled, but the highest HNAN grazing impact related to a time of high bacterial productivity.  相似文献   

14.
Oxygen consumption of Oreochromis niloticus at different stages of development was studied in relation to salinity, temperature and time of day, using a Warburg apparatus. The oxygen consumption of newly hatched (0–14 h) larvae was 3.40 μl O2 larva−1 h−1, of older yolk sac larvae 10.09 μl O2 larva−1 h−1, and of one-month-old fry 32.99 μl O2 larva−1 h−1. The QO2 values showed a decrease with development and growth, ranging from 21.2–26.0 μl O2 mg−1 h−1 in newly hatched larvae to 2.97 μl mg−1 h−1 in one-month-old fry. Changes in oxygen consumption occurred with salinity, the highest being at 17%o. Active larvae (12-24 mm T.L.) showed a doubling of consumption with a 10° C rise in temperature, and their Q10 factor increased from 2.25 to 3.43 with increasing size. Day-old yolk-sac larvae, late yolk-sac larvae (5 days old) and fry of 12 14 mm length all showed a depression in oxygen consumption at midnight followed by a dawn rise.  相似文献   

15.
Abstract: The retentostat was developed for long-term continuous, axenic cultivation of microorganisms at those low growth rates which prevail in most natural habitats and which cannot be established properly in chemostats. How a microbial population approaches 'zero-growth' was studied in axenic cultures of Nitrosomonas europaea with complete biomass retention at 25°C and constant input of a nutrient solution containing ammonium (0.57 mM) as energy source. Since only cell-free filtrate left the reactor, biomass accumulated until a stable maximum of 2.7 × 109 cells ml−1 (398 mg l−1 dry matter) was reached after about 5 weeks. In this state, growth rate approached zero, and the ammonium input just met the substrate demand required for maintenance energy (1.43 μmol NH3–N mg dm−1 h−1). The potential of the retentostat for studying interactions between different microorganisms was demonstrated with a cascade of cultures of Nitrosomonas, Nitrobacter , and a denitrifying Pseudomonas . Thereby the ammonia was completely eliminated from artificial wastewater.  相似文献   

16.
The heat treatment necessary to inactivate spores of non-proteolytic Clostridium botulinum in refrigerated, processed foods may be influenced by the occurrence of lysozyme in these foods. Spores of six strains of non-proteolytic Cl. botulinum were inoculated into tubes of an anaerobic meat medium, to give 106 spores per tube. Hen egg white lysozyme (0–50 μg ml-1) was added, and the tubes were given a heat treatment equivalent to 19·8 min at 90°C, cooled, and incubated at 8°, 12°, 16° and 25°C for up to 93 d. In the absence of added lysozyme, neither growth nor toxin formation were observed. A 6–D inactivation was therefore achieved. In tubes to which lysozyme (5–50 μg ml-1) had been added prior to heating, growth and toxin formation were observed. With lysozyme added at 50 μg ml-1, growth was first observed after 68 d at 8°C, 31 d at 12°C, 24 d at 16°C, and 9 d at 25°C. Thus, in these circumstances, a heat treatment equivalent to 19·8 min at 90°C was not sufficient, on its own, to give a 6–D inactivation. A combination of the heat treatment, maintenance at less than 12°C, and a shelf-life not more than 4 weeks reduced the risk of growth of non-proteolytic Cl. botulinum by a factor of 106.  相似文献   

17.
Abstract The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0–5 mm layer of the mat: 2.0 × 109 cells cm−3 sediment, and 4.0 × 107 cells cm−3 sediment for the colorless sulfur bacteria and phototrophs, respectively. Kinetic parameters for thiosulfate-limited growth were assessed for Thiobacillus thioparus T5 and Thiocapsa roseopersicina M1, both isolated from microbial mats. For Thiobacillus T5, growing at a constant oxygen concentration of 43 μmol l−1, μmax was 0.336 h−1 and K s 0.8 μmol l−1. Phototrophically grown Thiocapsa strain M1 displayed a μmax of 0.080 h−1 and a K s of 8 μmol l−1 when anoxically grown under thiosulfate limitation. In a competition experiment with thiosulfate as electron donor, Thiocapsa became dominant during a 10-h oxic/14-h anoxic regimen at continuous illumination, despite the higher affinity for thiosulfate of Thiobacillus .  相似文献   

18.
Four media were tested for their ability to detect the soft rot potato pathogens Erwinia chrysanthemi (Ech) and Erwinia carotovora ssp. atroseptica (Eca) in potato tubers by means of automated conductance measurements. The specificity of the conductimetric assays was determined by testing a set of different Erwinia spp. and potato-associated saprophytes, including the genera Pseudomonas, Bacillus, Enterobacter and Flavobacterium. All bacteria tested produced conductance responses in Special Peptone Yeast Extract, whereas in minimal medium with L-asparagine only Erwinia spp. and Pseudomonas spp. were able to generate large conductance responses. In minimal medium supplemented with glucose and trimethylamine- N -oxide only Enterobacteriaceae, Erwinia spp. included, generated conductance responses, while with pectate as sole carbon source only Erwinia spp. produced distinct conductance responses. The pectate medium proved to be particularly useful for specific automated conductimetric detection of Erwinia spp. in potato peel extracts. Within 48 h, the detection threshold of the conductimetric assay for Eca varied between 102 and 103 cfu per ml peel extract at both incubation temperatures of 20° and 26°C. Ech was detected at concentrations of 104–105 or 103–104 cfu ml-1 at 20° and 26°C, respectively. To eliminate 'false'-positive reactions in conductimetry caused by Erwinia carotovora ssp. carotovora , results of the conductance measurements have to be confirmed by other techniques, like serology or DNA assays.  相似文献   

19.
Standard metabolic rate (SMR), active metabolic rate (AMR) and critical oxygen saturation ( Scrit ) were measured in Atlantic cod Gadus morhua at 5, 10 and 15° C. The SMR was 35.5, 57.0 and 78.2 mg O2 kg−1 h−1 and Scrit was 16.5, 23.2 and 30.3%, at 5, 10 and 15° C, respectively. Previously reported SMR for Atlantic cod from arctic waters at 4° C was twice that measured at 5° C in the present study. A possible intraspecific latitudinal difference in the SMR is discussed. The AMR was 146.6, 197.9 and 200.4 mg O2 kg−1 h−1 and the critical swimming speed ( Ucrit ) was 1 6, 1.7 and 1.9 at 5, 10 and 15° C, respectively. The maximum oxygen consumption was found to be associated with exercise, rather than recovery from exercise as previously reported in another Study of Cod metabolism.  相似文献   

20.
Six cultivars of spring barley ( Hordeum vulgare L. cvs Salve, Nümberg II, Bomi, Risø 1508, Mona and Sv 73 608) were grown in water culture for three weeks with various combinations of mineral supply and differential roots/shoot temperatures during the growth period. Most important for growth and accumulation of N, K+, Ca2+ and Mg2+ was the mineral supply, followed by the root temperature and the choice of cultivar. Treatments with low mineral supply or low root temperature induced a uniform reduction in growth and accumulation of the ions studied. The effects of low mineral supply and low root temperature on growth and N accumulation was additive, which indicates that these factors exert their influence independently of each other.
Roots grown at 10°C were smaller and Rb+(86Rb) influx was higher than in roots grown at 20°C. It is suggested that the control of Rb+(86Rb) influx is affected by the root temperature and the age of the plants. The higher 86Rb+ (86Rb) influx into the low temperature roots could not compensate for the smaller root size. However, the lower total mineral accumulation made up for the needs of the smaller plants and cannot explain the reduction in growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号