首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnitude and temporal variability of exocellulase (-1,4-exoglucanase) activity in leaf litter and guts of shredding macroinvertebrates was determined over one year in four streams in Virginia, USA. The streams flowed in three physiographic provinces and hence varied as to geomorphology, hydrology, water chemistry and riparian landscape. No significant difference in exocellulase activity occurred between streams over the year. Considerable temporal variation in activity did occur in all streams, with peaks in autumn-early winter and again in spring, corresponding to the primary periods of input of fresh allochthonous organic matter. Litter bag studies showed that peak exocellulase activity occurred after about one month of processing. Exocellulase activity in the guts of shredders was generally correlated with activity in their detrital food, suggesting that gut enzyme activity was acquired.  相似文献   

2.
3.
Leaf litter can be of great importance for the productivity of small oligotrophic lakes surrounded by deciduous forests. Feeding invertebrate shredders produce particulate organic leftovers, but their feeding also enhances the release of dissolved organic carbon (DOC). We tested whether invertebrate-mediated DOC release affects the production of heterotrophic water-column bacteria. Submersed leaves were incubated in microcosms with and without shredders; and DOC, absorbance, bacterial abundance and bacterial production in the water column were monitored. We also measured dry weight of the organic particles (FPOC, fine particulate organic carbon, leaf residues and shredders). Total leaf-litter carbon decreased by nearly 80% in the presence of shredders, and on average 56% of the initial leaf carbon ended up as FPOC after 126 days of incubation. Without shredders FPOC production was almost zero, and 72% of the added leaf carbon could be retrieved as leaves when the experiment ended. Both these figures include the rapid release of DOC during the first week of leaf incubation in the lake water (equivalent to 16–19% of total added leaf carbon). Although bacterial production in the water was several times higher in treatments with shredders, bacterial consumption of leaf-derived DOC from shredding was obviously of minor importance in the total carbon budget. This result suggests, although shredders have a strong impact on transformation of leaves to FPOC, they do not greatly enhance the initial rate of mineralization of the leaf-derived detritus.  相似文献   

4.
5.
Summary 1. Heterotrophic microorganisms are crucial for mineralising leaf litter and rendering it more palatable to leaf‐shredding invertebrates. A substantial part of leaf litter entering running waters may be buried in the streambed and thus be exposed to the constraining conditions prevailing in the hyporheic zone. The fate of this buried organic matter and particularly the role of microbial conditioning in this habitat remain largely unexplored. 2. The aim of this study was to determine how the location of leaf litter within the streambed (i.e. at the surface or buried), as well as the leaf litter burial history, may affect the leaf‐associated aquatic hyphomycete communities and therefore leaf consumption by invertebrate detritivores. We tested the hypotheses that (i) burial of leaf litter would result in lower decomposition rates associated with changes in microbial assemblages compared with leaf litter at the surface and (ii) altered microbial conditioning of buried leaf litter would lead to decreased quality and palatability to their consumers, translating into lower growth rates of detritivores. 3. These hypotheses were tested experimentally in a second‐order stream where leaf‐associated microbial communities, as well as leaf litter decomposition rates, elemental composition and toughness, were compared across controlled treatments differing by their location within the streambed. We examined the effects of the diverse conditioning treatments on decaying leaf palatability to consumers through feeding trials on three shredder taxa including a freshwater amphipod, of which we also determined the growth rate. 4. Microbial leaf litter decomposition, fungal biomass and sporulation rates were reduced when leaf litter was buried in the hyporheic zone. While the total species richness of fungal assemblages was similar among treatments, the composition of fungal assemblages was affected by leaf litter burial in sediment. 5. Leaf litter burial markedly affected the food quality (especially P content) of leaf material, probably due to the changes in microbial conditioning. Leaf litter palatability to shredders was highest for leaves exposed at the sediment surface and tended to be negatively related to leaf litter toughness and C/P ratio. In addition, burial of leaf litter led to lower amphipod growth rates, which were positively correlated with leaf litter P content. 6. These results emphasise the importance of leaf colonisation by aquatic fungi in the hyporheic zone of headwater streams, where fungal conditioning of leaf litter appears particularly critical for nutrient and energy transfer to higher trophic levels.  相似文献   

6.
1. The functioning of many aquatic ecosystems is controlled by surrounding terrestrial ecosystems. In a view of growing interest in linking biodiversity to ecosystem‐level processes, we examined whether and how leaf diversity influences litter decomposition and consumers in streams. 2. We tested experimentally the hypothesis that the effects of leaf diversity on decomposition are determined by the responses of leaf consumers to resource–habitat heterogeneity. Leaves from three common riparian trees, beech (Fagus sylvatica), hazel (Corylus avellana) and ash (Fraxinus excelsior), were exposed alone and in all possible mixtures of two and three species in a stream. We analysed individual leaf species for decomposition rate, microbial respiration and mycelial biomass, and we determined the species composition, abundance and biomass of shredders in leaf bags. 3. We found that the decomposition of the fastest decomposing leaves (hazel and ash) was substantially stimulated (up to twofold higher than single species leaf packs) in mixtures containing beech leaves, which are refractory. In contrast, the decomposition of beech leaves was not affected by leaf mixing. Such species‐specific behaviour of leaves in species mixtures has been overlooked in previous studies that examined the overall decomposition of litter mixtures. 4. The effects of leaf diversity on decomposition varied with the abundance and biomass of shredders but not with microbial parameters. Beech leaves alone were less attractive to shredders than leaf packs made of hazel, ash or any mixture of species. Moreover, the presence of beech leaves in mixtures led to higher shredder abundance and biomass than we had expected from data from single species exposed alone. Lastly, we found that early instars of the caddisfly Potamophylax (the dominant shredder in terms of biomass) almost exclusively used the toughest material (i.e. beech leaves) to construct their cases. 5. Leaf pack heterogeneity may have altered shredder‐mediated decomposition. Shredders colonising diverse leaf packs benefited from the stable substratum provided by beech leaves, whereas ash and hazel leaves were primarily used as food. Thus, our findings provide strong evidence for an intimate linkage between the diversity of riparian vegetation and aquatic communities.  相似文献   

7.
1. Detecting hot spots of litter decomposition will promote understanding of litter processing in a heterogeneous system. To identify hot spots of leaf breakdown within a headwater stream reach, we examined the difference in leaf breakdown rate among four types of litter patches, one that formed in riffles and three that formed in pools (middle, alcove, edge), in different seasons. 2. Middle patches showed the highest breakdown rate in some seasons; the rate in middle patches was 1.5–4 times higher than in the other patches. Thus middle patches can be regarded as hot spots of leaf breakdown in the study reach. This result contrasted with other studies showing higher breakdown rate in riffles than in pools. 3. Significant relationships between abundance of caddisfly shredders and breakdown rate were observed in seasons when the rate differed among patch types. Greater abundance of Lepidostoma seems to be responsible for middle patches being hot spots of leaf breakdown. 4. It is expected that when the proportion of leaves retained in middle patches within a reach is higher, the breakdown rate of the entire reach will be increased. Clarifying how the proportion of leaves retained on middle patches within a reach varies temporally and spatially would improve our understanding of leaf breakdown in headwater streams.  相似文献   

8.
Abstract Decomposition of the organic matter is a key process in the functioning of aquatic and terrestrial ecosystems, although different factors influence processing rates between and within these habitats. Most patterns were described for temperate regions, with fewer studies in tropical, warmer sites. In this study, we carried out a factorial experiment to compare processing rates of mixed species of leaf litter between terrestrial and aquatic habitats at a tropical site, using ?ne and coarse mesh cages to allow or prevent colonization by macroinvertebrates. The experiment was followed for 10 weeks, and loss of leaf litter mass through time was evaluated using exponential models. We found no interaction between habitat and mesh size and leaf litter breakdown rates did not differ between ?ne and coarse mesh cages, suggesting that macroinvertebrates do not influence leaf litter decomposition in either habitat at our studied site. Leaf breakdown rates were faster in aquatic than in terrestrial habitats and the magnitude of these differences were comparable to studies in temperate regions, suggesting that equivalent factors can influence between‐habitat differences detected in our study.  相似文献   

9.
Variable effects of air-drying on leaching losses from tree leaf litter   总被引:3,自引:3,他引:0  
Leaching of soluble substances may be an important first step in leaf litter decomposition in small streams, but recent research has suggested that large leaching losses (up to 30% of initial mass in 48 h) may be an artifact created by using air-dried leaves in decomposition experiments. In laboratory experiments, we compared 3 d leaching losses from freshly fallen and air-dried senescent leaves of 27 tree species from different regions across Canada. Air-dried leaves from all species leached measurable amounts of original mass (3.6–32.8% dry mass), but leaching losses from fresh leaves (0–35%) were detectable in all but two species. Air-drying increased leaching losses in many species, but in others it reduced leaching losses or had no measurable effect. Results for leaves of the same species collected in different regions or in different years were generally similar, but species within the same genus often behaved very differently. Neither moisture content (fresh or air-dried), leaf thickness, nor cuticle thickness proved of any value as predictors of leaching losses or the effect of air-drying. The propensity of autumn-fallen leaves to leach, whether fresh or air-dried, appears to be a property of the individual tree species.  相似文献   

10.
11.
亚热带3种树种凋落叶厚度对其分解速率及酶活性的影响   总被引:4,自引:0,他引:4  
季晓燕  江洪  洪江华  马元丹 《生态学报》2013,33(6):1731-1739
对中国亚热带树种杉木(Cunninghamia lanceolata)、香樟(Cinnamomum camphora)、银杏(Ginkgo biloba)3个树种在不同凋落物厚度下凋落物分解速率和分解酶活性进行了探究.利用分解网袋法,根据浙江省的平均酸雨水平,在酸雨(pH4.0)条件下设置了凋落物40g、凋落物20g、凋落物10g 3个梯度.结果表明:凋落物分解速率随厚度的增加呈加快的趋势,杉木凋落物10、20、40g的年分解系数K分别为0.24、0.27、0.34,香樟凋落物10、20、40g的年分解系数K分别为0.25、0.3、0.32,银杏凋落物10、20、40g的年分解系数K分别为0.42、0.5、0.58;脲酶活性表现为:凋落叶40g>凋落叶20g>凋落叶10g,纤维素酶活性表现为:凋落叶40g、凋落叶20g>凋落叶10g,蔗糖酶活性表现为:后期凋落叶40g>凋落叶20g>凋落叶10g,凋落物分解过程是多种酶共同作用的结果.  相似文献   

12.
13.
路颖  李坤  梁强  李传荣  张彩虹 《生态学报》2019,39(9):3175-3186
为研究泰山不同造林树种凋落物叶分解对细菌群落的影响。以泰山4种主要优势造林树种刺槐(Robinia pseucdoacacia)、麻栎(Quercus acutissima)、油松(Pinus tabulaeformis)和赤松(Pinus densiflora)为研究对象,采用凋落物分解袋法及Illumina Miseq测序平台对细菌16S rDNA V4—V5区扩增产物进行双端测序,分析了4种树种叶片凋落物分解对细菌群落结构及多样性的影响。结果表明:(1)4种树种叶片分解速率差异显著(P0.05),刺槐分解速率显著高于其他3个树种(P0.05),表现为刺槐赤松油松麻栎。(2)4种叶凋落物分解一年后化学元素含量与初始化学元素相比均存在显著差异。C、木质素含量均显著降低(P0.05);N、P含量显著升高(P0.05)。(3)所有样品一共获得643440条有效序列,分属于35门,92纲,121目,246科,410属,206种。细菌群落NMDSβ-多样性分析显示除油松和赤松间差异较小外,其他树种间差异程度均较大。其中,细菌群落相对丰度在5%以上的优势类群是变形菌门、放线菌门、拟杆菌门、酸杆菌门,且在4种处理之间差异显著(PSymbol|@@0.05)。在纲水平上,α-变形菌纲、β-变形菌纲、不明放线菌纲、鞘脂杆菌纲、γ-变形菌纲、δ-变形菌纲为主要的优势纲,其中不明放线菌纲和鞘脂杆菌纲差异显著(PSymbol|@@0.05)。在种水平上,Bradyrhizobium elkanii和Luteibacter rhizovicinus在4个处理中都为优势种,每个处理也都有自己所特有的优势种。(4)4个处理细菌丰富度(OUT、观测到的物种数和ACE指数)和系统发育多样性(PD指数)之间差异显著(PSymbol|@@0.05),且阔叶树种刺槐和麻栎显著高于针叶树种赤松和油松。(5)叶片凋落物性状和细菌群落NMDS分析表明,细菌群落多样性受到凋落物化学性质的影响,尤其是凋落物初始C/N比和木质素/N比。此外,在细菌群落多样性和叶片凋落物化学性质两个因素中,分解速率与凋落物化学性质相关性更大。研究结果有助于理解细菌群落结构和多样性对森林生态系统叶片凋落物分解的影响。  相似文献   

14.
1. Leaf litter breakdown by shredders in the field is affected by leaf toughness, nutritional value and the presence of secondary compounds such as polyphenols. However, experiments involving the use of single fungal strains have not supported the assumption that leaf parameters determine food selection by shredders perhaps because of a failure to test for high consumption prior to isolation of fungal strains, overrepresentation of hyphomycetes or the potential effects of accompanying bacteria. In this study, we used bacteria‐free, actively growing fungi and oomycetes isolated from conditioned leaf litter for which a shredder had already shown high consumption rates. 2. Black alder (Alnus glutinosa) leaf litter was exposed to the littoral zone of Lake Constance in autumn, and subsamples were analysed for leaf parameters and consumption by Gammarus roeselii under standard conditions at regular intervals. On dates with a high consumption rate of the exposed leaves, 14 single strains of fungi and oomycetes were isolated, freed of bacteria and grown on autoclaved leaves. 3. Six of eight measured leaf parameters of exposed leaves were significantly correlated with Gammarus consumption rates, with high colinearity among leaf parameters hampering the identification of causal relations between leaf parameters and feeding activity. 4. When single strains of fungi and oomycetes were grown on autoclaved leaf litter, toughness of colonised leaves was always lower than in the control and the content of protein, N and P were increased. There were pronounced strain‐specific effects on leaf parameters. Consumption rates also differed significantly, with nine of fourteen isolates consumed at higher rates than controls and none proving to be a deterrent. Protein and polyphenol content were significantly correlated with consumption rates. Oomycete‐colonised leaves were consumed at similar rates but were of lower food quality than fungi‐colonised leaves. 5. We argue that direct strain‐specific attractant or repellent effects of fungi and oomycetes on consumption by G. roeselii are not important. However, we found indirect strain‐specific role operating via effects on leaf parameters.  相似文献   

15.
A manipulative field experiment to test for trophic cascading effects of predatory fish on detritus processing by benthic invertebrates was performed in stream channels running through a wetland forest in northern Japan. To control for fish effects on benthic invertebrates, two simple treatments (fish-present and fish-absent) were established for 4 weeks, with two common predatory fish, rainbow trout (Oncorhynchus mykiss) and freshwater sculpin (Cottus nozawae), being introduced into and excluded from stream cages. At the end of experiment, the biomass of the dominant detritivore, an amphipod (Jesogammarus jezoensis), was significantly less in the fish-present treatment (0.56 g m–2 in dry mass on average) than that in the fish-absent treatment (1.32 g m–2), there being no significant treatment effect evident for the second-dominant detritivore, coleopteran larvae (Optioservus kubotai). The loss of oak leaves (Quercus crispla) from litter bags in the fish-present treatment (0.31 g week–1 in dry mass on average) was significantly less than in the fish-absent treatment (0.54 g week–1). Predator-induced lower biomass and likely lowered foraging activities of the J. jezoensis were responsible for the suppression of litter processing efficiency. In contrast, the standing crop of fine particulate organic matter did not differ significantly between the treatments. The experimental results revealed that the predatory fish had an indirect but significant effect on leaf litter processing in the stream.  相似文献   

16.
Hans Malicky 《Hydrobiologia》1990,206(2):163-173
In the southern parts of the Mediterranean region, as in the island of Crete, there are few species of riparian trees and shrubs among the dominant Platanus orientalis. Feeding tests have shown that leaves of Platanus are not eaten by aquatic shredders of continental and Cretean origin. The large quantities of organic matter are therefore not used as a source of food and energy by the stream communities. In addition, the high winter flow shortly after leaf fall, and the short courses of rivers result in loss of most of the leaf litter to the sea. The River Continuum Concept does therefore not apply to this region. Field observations have shown that amphipods and limnephilid larvae are shifting from shredding to scraping habits if no leaf litter except Platanus was available.  相似文献   

17.
The decomposition of allochthonous leaf litter is retarded by stream acidification, but few studies have evaluated whether this effect can be offset by liming – the palliative addition of calcium carbonate either to streams or their catchments. We assessed the response of litter decomposition to pH and experimental liming in Welsh upland streams. Small-mesh (<335 μm) litter-bags containing common beech (Fagus sylvatica L.) were submerged in main river sites along the River Wye, and in replicate acid, circumneutral and experimentally limed tributaries (all n = 3) for 20 days. Beech decomposition was inhibited in acid tributaries and main river sites compared to circumneutral tributaries. Despite having only moderately increased pH relative to acid streams, limed sites had increased decomposition rates that were indistinguishable from naturally circumneutral streams. Decomposition rates increased highly significantly with pH across all 12 sites studied, and values were near identical to those in more prolonged experiments elsewhere. There were no significant variations in shredder numbers with decomposition rate, and no evidence that sites with faster decomposition had smaller shredder proportions. Although based on short-term observations and leaves from just one tree species, these results are consistent with the well-known retardation at low pH of some aspect microbial decomposition (e.g. by hyphomycete fungi). They are among the first to suggest that stream liming to combat acidification might reverse such impacts of low pH. Further data are required on the microbiological causes and ecological consequences of altered detrital processing in acid-sensitive and limed streams.  相似文献   

18.
1. Headwater stream ecosystems are primarily heterotrophic, with allochthonous organic matter being the dominant energy. However, sunlight indirectly influences ecosystem structure and functioning, affecting microbial and invertebrate consumers and, ultimately, leaf litter breakdown. We tested the effects of artificial shading on litter breakdown rates in an open‐canopy stream (high ambient light) and a closed‐canopy stream (low ambient light). We further examined the responses of invertebrate shredders and aquatic hyphomycetes to shading to disentangle the underlying effects of light availability on litter breakdown. 2. Litter breakdown was substantially slower for both fast‐decomposing (alder, Alnus glutinosa) and slow‐decomposing (beech, Fagus sylvatica) leaf litters in artificially shaded stream reaches relative to control (no artificial shading) reaches, regardless of stream type (open or closed canopy). 3. Shredder densities were higher on A. glutinosa than on F. sylvatica litter, and shading had a greater effect on reducing shredder densities associated with A. glutinosa than those associated with F. sylvatica litter in both stream types. Fungal biomass was also negatively affected by shading. Results suggest that the effects of light availability on litter breakdown rates are mediated by resource quality and consumer density. 4. Results from feeding experiments, where A. glutinosa litter incubated under ambient light or artificial shade was offered to the shredder Gammarus fossarum, suggest that experimental shading and riparian canopy openness influenced litter palatability interactively. Rates of litter consumption by G. fossarum were decreased by experimental shading in the open‐canopy stream only. 5. The results suggest that even small variations in light availability in streams can mediate substantial within‐stream heterogeneity in litter breakdown. This study provides further evidence that changes in riparian vegetation, and thus light availability, influence organic matter processing in heterotrophic stream ecosystems through multiple trophic levels.  相似文献   

19.
  • 1 The direct effect of sunlight on the conditioning, breakdown and incorporation of leaf litter in stream food webs has not yet been considered. The aim here was to evaluate the effects of light intensity on the colonization of leaf litter by microorganisms and its resulting quality as food for the stonefly shredder Klapopteryx kuscheli.
  • 2 Leaf litter was conditioned for 2 months in an open reach of a second‐order stream in litter bags either exposed to or shaded from direct sunlight. Subsequently, we performed laboratory experiments to test larval consumption, growth, growth efficiency and feeding preference fed on both leaf litter treatments.
  • 3 Leaf litter in the unshaded treatment had three times more chlorophyll‐a (Chl‐a) than that in the shaded treatment, 50% lower fungal biomass and similar bacterial abundance. Although larvae did not prefer either food and fed at the same rate on both leaf litter treatments, they grew twice as fast on the shade‐conditioned leaves and attained a two‐fold higher growth efficiency.
  • 4 Sunlight can have significant effects on detritus‐based food webs. Riparian modification induced by human activities in forested catchments increases the potential for sunlight to influence detritus dynamics.
  相似文献   

20.
1. Large-scale invasions of riparian trees can alter the quantity and quality of allochthonous inputs of leaf litter to streams and thus have the potential to alter stream organic matter dynamics. Non-native saltcedar ( Tamarix sp.) and Russian olive ( Elaeagnus angustifolia ) are now among the most common trees in riparian zones in western North America, yet their impacts on energy flow in streams are virtually unknown.
2. We conducted a laboratory feeding experiment to compare the growth of the aquatic crane fly Tipula (Diptera: Tipulidae) on leaf litter from native cottonwood ( Populus ) and non-native Tamarix and Elaeagnus . Tipula showed positive growth on leaf litter of all three species; however, after 7 weeks, larvae fed Tamarix leaves averaged 1.7 and 2.5 times the mass of those fed Elaeagnus and Populus , respectively. Tipula survival was highest on Populus , intermediate on Tamarix and lowest on Elaeagnus .
3. High Tipula growth on Tamarix probably reflects a combination of leaf chemistry and morphology. Conditioned Tamarix leaf litter had intermediate carbon : nitrogen values (33 : 1) compared to Populus (40 : 1) and Elaeagnus (26 : 1), and it had intermediate proportions of structural carbon (42%) compared to Elaeagnus (57%) and Populus (35%). Tamarix leaves are also relatively small and possibly more easily ingested by Tipula than either Elaeagnus or Populus .
4. Field surveys of streams in the western U.S.A. revealed that Tamarix and Elaeagnus leaf packs were rare compared to native Populus , probably due to the elongate shape and small size of the non-native leaves. Thus we conclude that, in general, the impact of non-native riparian invasion on aquatic shredders will depend not only on leaf decomposition rate and palatability but also on rates of leaf litter input to the stream coupled with streambed retention and subsequent availability to consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号