首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

2.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

3.
PurposeTo establish intra- and inter-session reliability of high-density surface electromyography (HDEMG)-derived parameters from the thoracic erector spinae (ES) during static and dynamic goal-directed voluntary movements of the trunk, and during functional reaching tasks.MethodsTwenty participants performed: 1) static trunk extension, 2) dynamic trunk forward and lateral flexion, and 3) multidirectional functional reaching tasks on two occasions separated by 7.5 ± 1.2 days. Muscle activity was recorded bilaterally from the thoracic ES. Root mean square (RMS), coordinates of the barycentre, mean frequency (MNF), and entropy were derived from the HDEMG signals. Reliability was determined with intraclass correlation coefficient (ICC), coefficient of variation, and standard error of measurement.ResultsGood-to-excellent intra-session reliability was found for all parameters and tasks (ICC: 0.79-0.99), whereas inter-session reliability varied across tasks. Static tasks demonstrated higher reliability in most parameters compared to functional and dynamic tasks. Absolute RMS and MNF showed the highest overall reliability across tasks (ICC: 0.66-0.98), while reliability of the barycentre was influenced by the direction of the movements.ConclusionRMS and MNF derived from HDEMG show consistent inter-session reliability in goal-directed voluntary movements of the trunk and reaching tasks, whereas the measures of the barycentre and entropy demonstrate task-dependent reliability.  相似文献   

4.
High-density surface electromyography (HDEMG) is an electrophysiological technique that can be used to quantify the spatial distribution of activity within muscles. When pain-free individuals perform sustained or repetitive tasks, different regions within a muscle become progressively more active; this is thought to reflect a strategy to redistribute the load to different regions, thus limiting localised muscle fatigue. The use of HDEMG has revealed that when people with musculoskeletal pain perform the same tasks, the distribution of activity within the same muscle is usually different, and the same muscle region tends to be active throughout the whole task without progressive activation of different muscle regions. This potentially results in a focal overload of a muscle region, and may contribute to fatigue, localised muscle pain and potentially pain persistence and/or recurrence over time. Interestingly, not all patients with musculoskeletal pain present with this regional alteration in muscle activation, reflecting the heterogeneity of patient presentations. This article will briefly review the technique of HDEMG followed by a review of studies demonstrating spatial redistribution of muscle activity in asymptomatic people during both isometric and dynamic conditions, including functional tasks. Lastly, the article will provide a review of HDEMG studies with a focus on changes in the behaviour of the lumbar erector spine and upper trapezius in people with spinal pain. These studies have revealed subtle changes in the distribution of muscle activity in people with spinal pain, which may have relevance for onset, persistence or recurrence of symptoms and could become a target of novel therapeutic approaches.  相似文献   

5.
The evolution of erect posture and locomotion continues to be a major focus of interest among paleoanthropologists and functional morphologists. To date, virtually all of our knowledge about the functional role of the back muscles in the evolution of bipedalism is based on human experimental data. In order to broaden our evolutionary perspective on the vertebral region, we have undertaken an electromyographic (EMG) analysis of three deep back muscles (multifidus, longissimus thoracis, iliocostalis lumborum) in the chimpanzee (Pan troglodytes) and gibbon (Hylobates lar) during bipedal walking. The recruitment patterns of these three muscles seen in the chimpanzee closely parallel those observed in the gibbon. The activity patterns of multifidus and longissimus are more similar to each other than either is to iliocostalis. Iliocostalis recruitment is clearly related to contact by the contralateral limb during bipedal walking in both species. It is suggested that in both the chimpanzee and gibbon, multifidus controls trunk movement primarily in the sagittal plane, iliocostalis responds to and adjusts movement in the frontal plane, while longissimus contributes to both of these functions. In many respects, the activity patterns shared by the chimpanzee and gibbon are quite consistent with recent human experimental data. This suggests a basic similarity in the mechanical constraints placed on the back during bipedalism among these three hominoids. Thus, the acquisition of habitual bipedalism in humans probably involved not so much a major change in back muscle action or function, but rather an improvement in the mechanical advantages and architecture of these muscles.  相似文献   

6.
The purpose of this study was to investigate the force-velocity (F/) relationship for the erector spinae muscles in submaximal activation movements, with particular attention to their response during lengthening movements and at lower shortening contraction velocities. Dynamic models that predict lower back muscle forces require reasonable representations of the modulating effect of instantaneous velocity. Ten males were observed performing trunk flexion and extension in the sagittal plane under constant load. Contraction velocities were measured as the first derivative from a devise sensitive to changes in spine curvature, and controlled by a visual feedback system while a constant load was applied through a chest harness. The erector spinae exhibited a yielding phenomenon which causes an abrupt drop in force during constant velocity stretching under constant, submaximal, stimulation. The findings were consistent with previous isovelocity muscle lengthening experiments. Yielding appeared dependent on the level of load/activation supporting the theory of a state-variableF/ relationship. The eccentric behaviour of the lower erectors (L3) seemed independent of velocity and length, while that of the upper erectors (T9) showed a dependence on length. At lower concentric velocities, concavity in torque-velocity curves was noted after a threshold velocity. The findings of this study strongly reinforce the notion that theF/ length relationship is not a continuous hyperbolic relationship during muscle shortening and that the commonly modelled force augmentation effect of lengthening is incorrect, at least for submaximal activation of the extensors of the lower back.  相似文献   

7.
The purpose of the study was to explore changes in the spatial distribution of erector spinae electromyography amplitude during static, sustained contractions and during contractions of increasing load. Surface electromyographic (EMG) signals were detected from nine healthy subjects using a grid of 13 × 5 electrodes placed unilaterally over the lumbar erector spinae musculature. Subjects stood in a 20° forward flexed position and performed: (1) six 20-s long contractions with loads ranging from 2.5 kg to 12.5 kg (2.5 kg increments) and (2) a 6 min sustained contraction with 7.5 kg load. Root mean square (RMS) and mean power spectral frequency (MNF) were computed from the recorded EMG signals. EMG RMS increased (P < 0.0001) and MNF remained constant during contractions of increased load. During the sustained contraction, MNF decreased (P < 0.0001) and RMS did not change over time. The centroid (center of activity) of the RMS map shifted caudally (P < 0.0001) with time during the sustained contraction but did not change with varying load. These results suggest a change in the distribution of erector spinae muscle activity with fatigue and a uniform distribution of muscle activation across loads.  相似文献   

8.
Microcirculation in the upper portion of the trapezius muscle was measured percutaneously in a group of 16 healthy women of different ages by continuous laser-Doppler flowmetry (LDF) in relation to electromyography (EMG) during an endurance test. During the measurements the subject kept her arms straight and elevated at 45° in the scapular plane and held a 1-kg load in each hand as long as possible. This was followed by rest with the arms hanging and carrying no load. The 10-min recording period comprised 1-min initial rest followed by the endurance test and then recovery. Signal processing was done by computer on line. The LDF and root-mean-square (rms) EMG signals were normalized. Spectrum analyses of EMG mean power frequency (MPF) were performed. The amount of load produced was on average 2,267 (SD 939) N · m · s, i.e. shoulder torque × time expressed as Newton meter seconds, and the endurance time was 4.3 (SD 1.20) min. The rms-EMG as well as the LDF increased significantly during endurance, both when related to endurance time and to amount of load. The MPF showed no significant changes. The mean total increase in muscle blood flow was 175% of that recorded in the initial rest period. The average increase per each 10 s of contraction was 2.9%. Maximum was reached during the 1st min of recovery followed by a fall to the base level that was reached within 77 s on average. The amount of load produced and the blood flow increase was smaller than that found in a separate study of men, indicating a lower functional capacity. This may be of importance for the development of neck-shoulder disability in women.  相似文献   

9.
Vascular smooth muscle cells (VSMC) are mature cells that maintain great plasticity. This distinctive feature is the basis of the VSMC migration and proliferation involved in cardiovascular diseases. We have used a proteomic approach to the molecular changes that promote the switch of VSMC from having a quiescent to activated-proliferating phenotype. In particular, we have focused on modulations occurring during tyrosine-phosphorylation following cell activation by serum or single growth factors, such as insulin-like growth factor 1 or platelet-derived growth factor. A comparison of two-dimensional polyacrylamide gel profiles from quiescent or activated-proliferating VSMC has allowed us to recognize a number of differences in protein expression. Several differentially expressed proteins have been identified by mass spectrometry, and their time-course changes during tyrosine-phosphorylation have been documented from time zero till 48 h after stimulation. We have documented a general decrease of the tyrosine-phosphorylation level within the first few minutes after stimulation followed by a recovery that is quick and dramatic for some chaperones and redox enzymes but not so significant for enzymes of glucose metabolism. With regard to cytoskeleton components, no remarkable fluctuations have been detected at the earliest time points, except for those relative to α-actin, which displays an impressive decrease. A comparison of the early stages of cell stimulation after the administration of serum or single growth factors has brought to light important differences in the phosphorylation of chaperones, thereby suggesting their crucial role in VSMC activation. This work was partially supported by two FIRB 2001 project grants to Dr. G. Rainaldi and to Prof. G. Camici.  相似文献   

10.
To assess the electromyographic (EMG) activation of trunk muscle during exertions performed in one primary plane (sagittal, frontal, transverse), we previously proposed a protocol allowing minimizing out-of-plane efforts (coupled moments – CMs) with the use of a static dynamometer combined with a visual feedback system. The aims of this study were to go further by testing motor learning and reliability issues related to such a protocol. Three identical sessions were conducted, where maximal voluntary contractions and submaximal ramp contractions were performed in six different directions while standing in the dynamometer. Two feedback conditions were tested, the simple 1D-feedback in the primary plane and the full 3D-feedback in all planes simultaneously. Surface EMG signals were collected from back and abdominal muscles and EMG amplitude and CMs were computed during the ramp contractions. Providing a 3D feedback to minimize CMs did not improve EMG reliability or in other words, did not reduce the within-subject variability. Providing three assessment days had practically no effect (no learning) on CMs and EMG variables. Overall, the reliability of EMG was at best moderate. However, although this limits its use on an individual basis, it still allows within- and between-group comparisons for research applications.  相似文献   

11.
Rat cytosolic sialidase is expressed at elevated levels in skeletal muscle and is believed to play a role in the myogenic differentiation of muscle cells. Here, we observed varying levels of enhancement of sialidase activity in the presence a range of divalent cations. In particular, a significant enhancement of activity was observed in the presence of Ca2+. Conversely, inhibition of the sialidase activity was found when the enzyme was incubated in the presence of Cu2+, EDTA, and a range of carbohydrate-based inhibitors. Finally, an investigation of the enzymatic hydrolysis of a synthetic substrate, 4-methylumbelliferyl N-acetyl-alpha-D-neuraminide, by 1H NMR spectroscopy revealed that the reaction catalysed by rat skeletal muscle cytosolic sialidase proceeds with overall retention of anomeric configuration. This result further supports the notion that all sialidases appear to be retaining enzymes.  相似文献   

12.
This review focuses on the role of the paraspinal muscles in relation to the development and existence of low back pain. It begins with a discussion of the deficits in paraspinal muscle strength and fatigue-resistance observed in low back pain patients and addresses the issue of ‘cause or effect’ with respect to muscle dysfunction and back pain. Our current knowledge regarding the ‘normal’ fibre type characteristics of the human erector spinae is then presented and the influence of these fibre type characteristics on the muscle's performance capacity is discussed. Alterations in the ‘microanatomy’ of the musculature in connection with low back pain, and the associated implications for the performance capacity of the patient, are then considered. Finally, a number of outstanding issues in relation to the clinical significance of back muscle dysfunction are identified, leading to the proposal of areas for future research.  相似文献   

13.
Baseball research on muscle activity (upper and lower extremity) during the throwing motion is important to understanding pitching mechanics for the future. Therefore, it is the purpose of this research study to compare the lower extremity muscle and upper extremity muscle activation patterns associated with the curveball pitch and the fastball pitch from the stretch position. Twelve skilled (NCAA collegiate level) pitchers volunteered to be in this study, with a mean age of 22.3 ± 4.53 years, mean height of 1.74 ± 0.13 m, and mean mass of 89.0 k ± 10.97 kg. The pitchers were fitted with six surface electromyography (EMG) bipolar electrodes on the stride leg biceps femoris, medial gastrocnemius, ipsilateral side lower trapezius, upper trapezius, triceps brachii and biceps brachii. Each pitcher underwent maximum voluntary isometric contraction (MVIC) testing and then performed the fastball & curveball pitching sequence. All EMG variables of interest were normalized using MVIC data and compared between pitching type. A repeated measures ANOVA was conducted for all muscle activity as well. If significance was found a pairwise analysis (Bonferroni) was performed between pitch type, using SPSS (p 0.05). Significant differences in the mean muscle activity for the fastball and curveball pitched from the stretch were observed. A higher level of muscle activity was found for the stretch fastball when compared to the stretch curveball. This study was able to provide a baseline measurement of muscle activity; however, kinematics and kinetics should be measured in future studies.  相似文献   

14.
Vascular smooth muscle cells (VSMC) are mature cells that maintain great plasticity. This distinctive quality is the basis of the migration and proliferation of VSMC in cardiovascular diseases. We have investigated, via a proteomic approach, the molecular changes that promote VSMC switching from a quiescent to an activated-proliferating phenotype. In particular, we focus on the modulation in tyrosine phosphorylation that occurs in cell activation by serum or by single growth factors, such as insulin-like growth factor 1 (IGF-1) or platelet-derived growth factor (PDGF-BB). A comparison of profiles from two-dimensional polyacrylamide gel electrophoresis analysis of quiescent and activated-proliferating VSMC has revealed a number of differences in protein expression. Several differentially expressed proteins have been identified by mass spectrometry, and their changes during the time course of tyrosine phosphorylation have been documented from time zero up to 48 h after stimulus. The tyrosine-phosphorylation level generally decreases within a few minutes of stimulation, followed by a rapid dramatic recovery of some chaperones and redox enzymes, but no significant recovery for glucose metabolism enzymes. With respect to cytoskeleton components, no remarkable fluctuations have been detected at the earliest time points, except for those relating to α-actin, which displays an impressive decrease. A comparison of the early stages of cell stimulation after serum or after single growth factor administration has revealed important differences in the phosphorylation of chaperones, thereby suggesting their crucial role in VSMC activation. This work was partially supported by two FIRB 2001 project grants to Dr. G. Rainaldi and to Prof. G. Camici.  相似文献   

15.
Effect of high-intensity endurance training on isokinetic muscle power   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effects of high-intensity endurance training on isokinetic muscle power. Six male students majoring in physical-education participated in high intensity endurance training on a cycle ergometer at 90% of maximal oxygen uptake (VO2max) for 7 weeks. The duration of the daily exercise session was set so that the energy expenditure equalled 42 kJ.kg-1 of lean body mass. Peak knee extension power was measured at six different speeds (30 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.s-1) with an isokinetic dynamometer. After training, VO2max increased significantly from mean values of 51.2 ml.kg-1.min-1, SD 6.5 to 56.3 ml.kg-1.min-1, SD 5.3 (P less than 0.05). Isokinetic peak power at the lower test speeds (30 degrees, 60 degrees and 120 degrees.s-1) increased significantly (P less than 0.05). However, no significant differences in muscle peak power were found at the faster velocities of 180 degrees, 240 degrees, and 300 degrees.s-1. The percentage improvement was dependent on the initial muscle peak power of each subject and the training stimulus (intensity of cycle ergometer exercise).  相似文献   

16.
The presence of sulfated glycosaminoglycans (GAGs) was demonstrated in the connective tissue of bovine and cod skeletal muscle by histochemical staining using Alcian blue added MgCl2 (0.06 M and 0.4 M, respectively). For further identification of the sulfated GAGs, a panel of monoclonal antibodies, 1B5, 2B6, 3B3 and 5D4 was used that recognizes epitopes in chondroitin-0-sulfate (C0S), chondroitin-4-sulfate/dermatan sulfate (C4S/DS), chondroitin-6-sulfate (C6S) and keratan sulfate (KS), respectively. Light microscopy and Western blotting techniques showed that in bovine and cod muscle C0S and C6S were primarily localized pericellularly, whereas cod exhibited a more intermittent staining. C4S was expressed around the separate cells and also in the perimysium and myocommata. In contrast to bovine muscle, which hardly expressed highly sulfated KS, cod exhibited a very strong and consistent staining. Western blotting showed that C0S and C6S were mainly associated with proteoglycans (PGs) of high molecular sizes in both species. Contrary to bovine muscle, C4S in cod was associated with molecules of various sizes. Both cod and bovine muscle contained KSPGs of similar sizes as C4S. KSPGs of different sizes and buoyant densities, sensitive to keratanase I and II were found expressed in cod.  相似文献   

17.
We have tested the hypothesis that temporal muscle size determines the degree of interdigitation of the human sagittal suture by comparing male and female skulls of Europeans and Australian aborigines. Temporal muscle length, area of the temporal aperture and estimated muscle volume were greater in males than in females of each racial group. Sexual dimorphism of the complexity of the sagittal suture was not confirmed in either race. However, the suture was less complex in aborigines than Europeans despite the volume of the temporal muscle being larger in the former group. We conclude, therefore, that although the morphology of the sagittal suture is an epigenetic character, it is not mechanically influenced by muscle size. A simple quantitation of suture form may however be useful in assigning unknown skulls to a particular race.  相似文献   

18.
The effects of ageing and life-long endurance training on the collagen metabolism of skeletal muscle were evaluated in a longitudinal study. Wistar rats performed treadmill running 5 days a week for 2 years. The activities of collagen biosynthesis enzymes, prolyl-4-hydroxylase and galactosylhydroxylysyl glucosyltransferase, were highest in the muscles of the youngest animals, decreased up to the age of 2 months and from then on remained virtually unchanged. The enzyme activity in young animals was higher in the slow collagenous soleus muscle than in the rectus femoris muscle. The enzyme activity in the soleus muscle was higher for older trained rats than older untrained rats. The relative proportion of type I collagen increased and that of type III collagen decreased with age, suggesting a more marked contribution by type I collagen to the age-related accumulation of total muscular collagen. The results show that collagen biosynthesis decreases with maturation and that life-long endurance training maintains a higher level of biosynthesis in slow muscles.  相似文献   

19.
Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle. Miniature stimulators were implanted in Wistar rats (n = 9) to induce contraction of the left TA every 30 s for 28 days. The right limb was used as a contralateral control. Hindlimbs were imaged using microCT. Image data were used for bone measurements, and to construct a finite-element (FE) model simulation of TA forces propagating through the bone. This simulation was used to target subsequent bone histology and measurement of micromechanical properties to areas of high strain. FE mapping of simulated strains revealed peak values in the anterodistal region of the tibia (640 µε ± 30.4 µε). This region showed significant increases in cross-sectional area (28.61%, p < 0.05) and bone volume (30.29%, p < 0.05) in the stimulated limb. Histology revealed a large region of new bone, containing clusters of chondrocytes, indicative of endochondral ossification. The new bone region had a lower elastic modulus (8.8 ± 2.2 GPa) when compared with established bone (20 ± 1.4 GPa). Our study provides compelling new evidence of the interplay between muscle and bone.  相似文献   

20.
Isolated myosins from human predominantly fast and slow muscles, human neonatal and foetal muscle were examined for light chain composition by one- and two-dimensional electrophoresis. The LC1F, LC2F and LC3F light chains were identical with their counterparts from rabbit fast myosin. Human LC1S was identified by correlative criteria as a single component having a molecular weight slightly lower than, but an electric charge similar to, that of rabbit LC1Sb. Consequently, human LC1S appears to be much less heterogeneous relative to LC1F than is the case with other mammalian species. A high immunological cross-reactivity was likewise observed, with antibody specific to rabbit LC1F, between the isolated myosins from several human mixed muscles and rabbit fast myosin, though reactivity was highest with foetal myosin (having a pure-fast-light-chain pattern).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号