首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在常用的植物组成型表达载体pBI121的选择标记基因NPTII两侧插入同向的lox位点并用多克隆位点(MCS)取代了GUS基因序列,构建了NPTII基因可被去除的和可插入目的基因的通用植物表达载体pBI121-lox-MCS。替换pBI121-lox-MCS中驱动目的基因表达的35S启动子,可构建成一系列具有其他表达特性的植物表达载体,如本文描述的韧皮部特异表达载体pBdENP-lox-MCS。为方便地筛选去除选择标记基因的转基因植物,还构建了绿色荧光蛋白(GFP)表达框与NPTII表达框连锁的pBI121-gfp-lox-MCS载体。上述植物表达载体可广泛应用于培育选择标记可去除的转基因植物。  相似文献   

2.
核基质结合区(matrix attachment region,MAR)的应用是提高植物基因转化和表达效率的有效方法之一。将烟草(Nicotiana tabacum)核基质结合区TM2构建在植物表达载体pBI121上报告基因GUSA表达盒和选择标记基因NPTII表达盒的两侧翼,利用农杆菌介导的子叶浸染转化番茄(Lycopersicon esculentum)。结果表明,MAR序列能够显著提高转基因植株的转化效率和转基因的表达水平。不同长度的CaMV35S启动子比较表明,TM2的调控活性依赖于启动子的存在,并且具有一定的功能重叠。热诱导型启动子的研究表明,TM2仅提高热诱导的表达强度,而不改变启动子的热诱导表达调控特性。TM2的表达调控特性符合转基因的表达要求,该MAR序列可广泛应用于各种植物的基因工程中。  相似文献   

3.
4.
Chimeric plasmids able to replicate in Bacteroides fragilis or in B. fragilis and Escherichia coli were constructed and used as molecular cloning vectors. The 2.7-kilobase pair (kb) cryptic Bacteroides plasmid pBI143 and the E. coli cloning vector pUC19 were the two replicons used for these constructions. Selection of the plasmid vectors in B. fragilis was made possible by ligation to a restriction fragment bearing the clindamycin resistance (Ccr) determinant from a Bacteroides R plasmid, pBF4;Ccr was not expressed in E. coli. The chimeric plasmids ranged from 5.3 to 7.3 kb in size and contained at least 10 unique restriction enzyme recognition sites suitable for cloning. Transformation of B. fragilis with the chimeric plasmids was dependent upon the source of the DNA; generally 10(5) transformants micrograms-1 of DNA were recovered when plasmid purified from B. fragilis was used. When the source of DNA was E. coli, there was a 1,000-fold decrease in the number of transformants obtained. Two of the shuttle plasmids not containing the pBF4 Ccr determinant were used in an analysis of the transposon-like structure encoding Ccr in the R plasmid pBI136. This gene encoding Ccr was located on a 0.85-kb EcoRI-HaeII fragment and cloned nonselectively in E. coli. Recombinants containing the gene inserted in both orientations at the unique ClaI site within the pBI143 portion of the shuttle plasmids could transform B. fragilis to clindamycin resistance. These results together with previous structural data show that the gene encoding Ccr lies directly adjacent to one of the repeated sequences of the pBI136 transposon-like structure.  相似文献   

5.
Cotyledon explants of muskmelon (Cucumis melo L., cv. Amarillo Oro) seedlings were co-cultivated with disarmed Agrobacterium tumefaciens strain LBA4404 that contained the binary vector plasmid pBI121.1. The T-DNA region of this binary vector contains the Nopaline synthase/neomycin phosphotransferase II (NPTII) chimeric gene for kanamycin resistance and the Cauliflower Mosaic Virus 35S/-glucuronidase (GUS) chimeric gene. After infection, the cotyledon pieces were placed in induction medium containing 100 mg/l kanamycin. Putative transformed shoots were obtained, followed by the development of morphologically normal plantlets. The transgenic nature of regenerants was demonstrated by polymerase chain reaction, Southern blot analysis, plant growth on medium selective for the transgene (NPTII) and expression of the co-transformed GUS gene. Factors affecting the transformation procedure are discussed.Abbreviations CaMV Cauliflower Mosaic Virus - Cf Cefotaxime - GUS -glucuronidase - Km Kanamycin - MS Murashige and Skoog - NOS nopaline synthase - NPTII neomycin phosphotransferase II - PCR polymerase chain reaction  相似文献   

6.
Summary A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.) was developed using epicotyl segments. The segments were infected with Agrobacterium harboring the binary vector pBI121 or pBI101-O12-p1. Both vectors contained the neomycin phosphotransferase II (NPTII) and the -glucuronidase (GUS) genes. In the plasmid pBI101-O12-p1, the GUS gene was directed to the promoter region of ORF12 (rolC) of the Ri plasmid. On a selection medium containing 100 or 200 g/ml kanamycin, adventitious shoots were formed from 21.7–44.6% of the segments. Histochemical GUS assay showed that 55.4–87.7% of the shoots expressed the GUS gene. The stable integration of this gene was also confirmed by polymerase chain reaction (PCR) analysis and by Southern blot analysis. When the pBI101-O12-p1 plasmid was used, the GUS activity was found to be located in phloem cells of leaf, stem and root. More than 100 transformed plants were obtained using this method within 2–3 months.  相似文献   

7.
Summary Experimental parameters for direct gene transfer with recombinant DNA encoding neomycin phosphotransferase II (NPTII) under control of eukaryotic expression signals were established. The introduced gene was shown by the growth of transformants on media containing kanamycin, by genomic blotting and by assaying NPTII activity. Leaf protoplasts from three green genotypes of varieties xanthii and petit havanna, and from four plastome-encoded albino genotypes of Nicotiana tabacum were analyzed with respect to cell division kinetics and yield of kanamycin-tolerant colonies after direct gene transfer. No clear correlation was found between the time of onset of cell division and transformation frequency.  相似文献   

8.
高度耐盐双价转基因烟草的研究   总被引:29,自引:1,他引:29  
随着全球性人口的增长和土地退化的加剧,开发利用广阔盐碱地和干旱土地的需要日益迫切。植物生物技术的日臻完善,为培育高效耐盐植物迎来了一丝曙光。在高渗条件下,耐盐的微生物或植物细胞通过增加胞内一些相溶性溶质的浓度来维持渗透压的平衡。这些可溶性溶质包括无机离子、糖类、多元醇、氨基酸和生物碱等。通过基因工程手段,使细胞内积累脯氮酸⑴、甜菜碱⑵、甘露醇⑶、海藻糖⑷,能够不同程度地提高转基因烟草的耐盐性。多元醇含有多个羟基,亲水性能强,能有效维持细胞内水活度。山梨醇、甘露醇等己糖分子结构、理化性质和生理功能相近。故此.我们认为:不同糖醇在转基因烟草中的积累.可能具有协同(或累加)效应,有希望更大地提高植物耐盐性。我们在获得大肠杆菌mtlD基因(编码l-磷酸甘露醇脱氢酶)和gutD基因(编码6-磷酸山梨醇脱氢酶)克隆⑸的基础上,获得了分别表达mtlD和gutD基因的单价转基因烟草,并首次证实了gucD基因的表达,能显著地提高转基因烟草的耐盐性⑹。本文工作进一步报道同时表达大肠杆菌mtlD和gutD基因双价转基因烟草的高效高度耐盐性。  相似文献   

9.
Tang W 《Cell research》2001,11(3):237-243
This investigation reports a protocol for transfer and expression of foreign chimeric genes in loblolly pine (Pinus taeda L.). Transformation was achieved by co-cultivation of mature zygotic embryos with Agrobacterium tumefaciens strain LBA4404 which harbored a binary vector (pBI121) including genes for beta-glucuronidase (GUS) and neomycin phosphotransferase (NPTII). Factors influencing transgene expression including seed sources of loblolly pine, concentration of bacteria, and the wounding procedures of target explants were investigated. The expression of foreign gene was confirmed by the ability of mature zygotic embryos to produce calli in the presence of kanamycin, by histochemical assays of GUS activity, by PCR analysis, and by Southern blot. The successful expression of the GUS gene in different families of loblolly pine suggests that this transformation system is probably useful for the production of the genetically modified conifers.  相似文献   

10.
11.
Super-growing roots (superroots; SR), which have been established in the legume species Lotus corniculatus, are a fast-growing root culture that allows continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely growth regulator-free culture conditions. These features are unique for non-hairy root cultures, and they are now stably expressed since the culture was isolated more than 10 years ago (1997). Attempts to achieve direct and stable transformation of SR turned out to be unsuccessful. Making use of the supple regeneration plasticity of SR, we are reporting here an indirect transformation protocol. Leaf explants, derived from plants regenerated from SR, were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pBI121, which contains the neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) genes as selectable and visual markers, respectively. After co-cultivation, the explants were selected on solidified MS medium with 0.5mg/L benzylamino purine (BAP), 100mg/L kanamycin and 250mg/L cefotaxime. Kanamycin-resistant calli were transferred to liquid rooting medium. The newly regenerated, kanamycin-resistant roots were harvested and SR cultures re-established, which exhibited all the characteristics of the original SR. Furthermore, kanamycin-resistant roots cultured onto solidified MS medium supplemented with 0.5mg/L BAP produced plants at the same rate as control SR. Six months after gene transfer, PCR analysis and histochemical locating indicated that the NPTII gene was integrated into the genome and that the GUS gene was regularly expressed in leaves, roots and nodules, respectively. The protocol makes it now possible to produce transformed SR and nodules as well as transgenic plants from transformed SR.  相似文献   

12.
13.
Co-silencing of homologous transgenes in tobacco   总被引:1,自引:0,他引:1  
Two transgenes inserted into different genomic positions can co-inactivate each other when they share homologous sequences while each of the two homologous transgenes is stably expressed in the absence of a second homologous copy. To evaluate the efficiency of such homology-dependent gene silencing (HDGS) effects, we have produced 19 tobacco transformants that contained a stably expressed NPTII transgene inserted into a single genomic locus, and have analysed the stability of each transgene in the presence of a second stably expressed homologous transgene. All transformants shared the coding region of the NPTII gene but individual transformants differed in transgene copy number, expression levels and in the continuity of the transgene homology due to the insertion of introns into the NPTII region as well as the use of different promoters and terminators for the design of the transgene constructs. We generated 189 progeny populations representing all possible dual combinations among the 19 lines and analysed the kanamycin resistance of 400 seedlings of each cross. Our data show (1) that gene silencing occurs at a relative low frequency when transgenic loci sharing an homology at the coding sequence level are combined, and (2) that neither the variation of this homology by insertion of introns in the coding sequence, or by changing the promoter and terminator of the construct, nor the variation in the expression level of the transgene, are decisive parameters modifying the efficiency of co-silencing between two NPTII transgenes.  相似文献   

14.
15.
16.
香蕉花叶病毒外壳蛋白基因克隆及表达载体的构建   总被引:4,自引:0,他引:4  
从海南大田感染香蕉花叶病的香蕉叶片 ,获得香蕉花叶病毒 ,提纯其 RNA,在 AMV反转录酶作用下合成 c DNA第一链 ,经 PCR扩增 ,获得一约 70 0 bp的 DNA片段 ,测序结果显示所克隆的 DNA片段包含一完整的香蕉花叶病毒株系 ( CMV-BHI)外壳蛋白基因 ,长度为 6 5 7bp,然后将此 DNA片段 ,分别克隆到p BI1 2 1和 p KHG4质粒 ,构成两个含 Ca MV35 s启动子 ( 5 '-端 )、NOS终止子 ( 3'-端 )和分别含 NPT 标记基因和 NPT 及 HPT标记基因的植物表达载体 ( p TBB和 p TBK)。然后用 p AHC1 8中的 UBI promoter换下p BI1 2 1的 Ca MV35 s promoter,构成 p BIAH;再用 CMV-BHI外壳蛋白基因换下 p BIAH中 GUS基因 ,构成一含单子叶植物启动子 UBI和 NPT 标记基因的植物表达载体 ( p TBBU)。从而为 CMV-BHI外壳蛋白基因在香蕉中表达打下了基础  相似文献   

17.
Expression of a foreign gene in electroporated pollen grains of tobacco   总被引:1,自引:0,他引:1  
Summary The incorporation of genetically engineered DNA into pollen and subsequent fertilization of eggs by the transformed pollen would be a convenient method for producing genetically engineered seed. This method of pollen transformation would circumvent the need for other types of gene transfer methods such as the use of Agrobacterium tumefaciens, which has a limited host range and thus a limited capability for genetically engineering plants. It would also avoid the problems associated with the regeneration of some plants from tissue, cell, or protoplast culture after receiving foreign DNA. To this end, the genetically engineered plasmid DNA vector pBI221 containing the gene encoding -glucuronidase (GUS) was introduced by electroporation into germinating pollen grains of tobacco (Nicotiana gossei L.). Transient expression of the GUS gene was demonstrated by the presence of GUS activity in fluorometric assays of pollen extracts 24 h after the introduction of pBI221 via electroporation. Intact pBI221 was detected by Southern blotting procedures as a distinct DNA band in pollen extracts 1 h after electroporation. In addition, pBI221 was detected as a diffuse band of higher molecular weight DNA 24 h after electroporation, suggesting that some of the pBI221 was incorporated into the genome of the pollen.  相似文献   

18.
19.
20.
We determined whether T-DNA molecules introduced into plant cells using Agrobacterium are suitable substrates for homologous recombination. For the detection of such recombination events different mutant versions of a NPTII construct were used. In a first set of experiments protoplasts of Nicotiana tabacum SR1 were cocultivated with two Agrobacterium tumefaciens strains. Each strain contained a different T-DNA, one carrying a 5' deleted NPTII gene and the other a NPTII gene with a 3' deletion. A restored NPTII gene was found in 1-4% of the protoplasts that had been cotransformed with both T-DNAs. Restoration of the NPTII gene could only be the consequence of homologous recombination between the two different T-DNAs in the plant cell, since the possibility of recombination in Agrobacterium was excluded in control experiments. In subsequent experiments was investigated the potential use of Agrobacterium for gene targeting in plants. A transgenic tobacco line with a T-DNA insertion carrying a defective NPTII gene with a 3' deletion was transformed via Agrobacterium with a T-DNA containing a defective NPTII repair gene. Several kanamycin resistant plant lines were obtained with an intact NPTII gene integrated in their genome. In one of these lines the defective NPTII gene at the target locus had been properly restored. Our results show that in plants recombination can occur between a chromosomal locus and a homologous T-DNA introduced via A. tumefaciens. This opens the possibility of using the Agrobacterium transformation system for site directed mutagenesis of the plant genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号