首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grange  Eric  Rabin  Olivier  Bell  Jane  Chang  Michael C. J. 《Neurochemical research》1998,23(10):1251-1257
The Fatty Acid method was used to determine whether incorporation of plasma radiolabeled arachidonic acid into brain phospholipids is controlled by phospholipase A2. Awake rats received an i.v. injection of a phospholipase A2 inhibitor, manoalide (10 mg/kg), and then were infused i.v. with [1-14C]arachidonate or [3H]arachidonate. Animals were killed after infusion by microwave irradiation, and tracer distribution was analyzed in brain phospholipid, neutral lipid and acyl-CoA pools. Calcium-independent phospholipase A2 activity in brain homogenate was reduced by manoalide, whereas phospholipase C activity was unaffected. At 60 min but not at 20 or 40 min after its injection, manoalide had significantly decreased by 50% incorporation of unesterified arachidonate into and turnover within brain phospholipids, taking into account dilution of the brain arachidonoyl-CoA pool by recycled arachidonate. Manoalide also increased by 100% the net rate of unesterified arachidonate incorporation into brain triacylglycerol. This study indicates that manoalide can be used to inhibit brain phospholipase A2 in vivo, and that phospholipase A2 plays a critical role in arachidonate turnover in brain phospholipids and neutral lipids.  相似文献   

2.
The effect of hypoglycemia on the uptake of [1-14C]arachidonate and [1-14C]oleate into a synaptosomal and microsomal glycerophospholipids was investigated. In the presence of ATP, Mg2+ and CoA, rat brain synaptosomes and micorsomes catalyze the transfer of arachidonate and oleatc into glycerophospholipids. Arachidonate was mainly incorporated into phosphatidylinositol (PI) and phosphatidylcholine (PC), whereas oleate was incorporated into phosphatidylcholine and phosphatidylethanolamine (PE).Hypoglycemia was produced by intraperitoneal injection of 10 or 100 units of crystalline insulin per kg body weight. Two hours after injection the blood glucose level decreased to 10–20 mg%. The content of brain phospholipids was slightly decreased but the change was not statistically significant. The level of free fatty acids (FFA) was increased. More pronounced and reproducible changes were found when hypoglycemia was produced by injection of 100 units of insulin per/kg body weight. Changes in brain cortex were similar to those observed in microsomes and synaptosomes. Hypoglycemia affected the incorporation of arachidonic acid into glycerophospholipids of brain membranes. Uptake of [1-14C]arachidonate was decreased selectively by 50% (into phosphatidic acid /PA/) when hypogiycemia was produced by injection of 10 units of insulin per kg body weight. The Higher dose of insulin 100 units per kg body weight produced a 20% inhibition of arachidonate incorporation into synaptosomal PI and a 13% decrease of incorporation into microsomal phosphatidylcholine. Incorporation of [1-14C]oleate into membrane phospholipids was not changed by hypoglycemic insult. It is proposed that the disturbances in fatty acid level, particularly arachidonate, and decreased uptake of arachidonic acid by synaptosomal glycerophospholipids may be responsible for alteration of membrane function and changes of synaptic processes.  相似文献   

3.
The effects of 1 min of acute hypoxic treatment (1% O2 in N2) on incorporation of [1-14C]arachidonic acid into brain lipids of 16-day-old rats were investigated at 3, 6, and 12 min after intracerebral injection of the labeled fatty acid. The hypoxic-hypoxia condition associated with convulsive seizures caused a decrease in the conversion of labeled arachidonate to its acyl-CoA as well as incorporation of the label into the brain phospholipids. Among the phospholipids, there was a specific decrease in the labeling of diacylglycerophosphoinositol (GPI), and this change was accompanied by an increase in labeling of the diacylglycerols. These results indicate that metabolism of the long-chain fatty acids and some glycero-lipids in brain are vulnerable to acute hypoxic treatment.  相似文献   

4.
Summary Rat liver mitochondria were fractionated into inner and outer membrane components at various times after the intravenous injection of14C-leucine or14C-glycerol. The time curves of protein and lecithin labeling were similar in the intact mitochondria, the outer membrane fraction, and the inner membrane fraction. In rat liver slices also, the kinetics of3H-phenylalanine incorporation into mitochondrial KCl-insoluble proteins was identical to that of14C-glycerol incorporation into mitochondrial lecithin. These results suggest a simultaneous assembly of protein and lecithin during membrane biogenesisThe proteins and lecithin of the outer membrane were maximally labeledin vivo within 5 min after injection of the radioactive precursors, whereas the insoluble proteins and lecithin of the inner membrane reached a maximum specific acitivity 10 min after injection.Phospholipid incorporation into mitochondria of rat liver slices was not affected when protein synthesis was blocked by cycloheximide, puromycin, or actinomycin D. The injection of cycloheximide 3 to 30 min prior to14C-choline did not affect thein vivo incorporation of lecithin into the mitochondrial inner or outer membranes; however treatment with the drug for 60 min prior to14C-choline resulted in a decrease in lecithin labeling. These results suggest that phospholipid incorporation into membranes may be regulated by the amount of newly synthesized protein available.When mitochondria and microsomes containing labeled phospholipids were incubated with the opposite unlabeled fractionin vitro, a rapid exchange of phospholipid between the microsomes and the outer membrane occurred. A slight exchange with the inner membrane was observed.  相似文献   

5.
A study was conducted on the in vivo incorporation of l -[14C]-serine into the lipids and proteins of the various subcellular fractions of the developing rat brain before and during the stage of active myelination. The total radioactivity in the various fractions at 12 days of age was higher than that at 3 days, while the radioactive specific activity was reversed. The specific activities of the proteins and lipids were higher at 3 days of age with the exception of the subcellular fraction containing myelin. At both ages the lipids of the various cellular fractions had similar specific activities, a finding that suggests a common source for lipid biosynthesis. Incorporation of radioactivity into the various phospholipids was in the following order: phosphatidyl serine > phosphatidyl ethanolamine > phosphatidal serine > sphingomyelin and phosphatidyl choline. Of all the phospholipids, the plasmalogens increased most in total radioactivity during the period when meylination was most active. Serine-containing phospholipids appear to be most tightly bound to proteins. The brain mitochrondrial fraction contained most of the phosphatidyl serine decarboxylase activity with some activity in the nuclei. Biosynthesis of phosphatdyil ethanolamine through decarboxylation of phosphatidyl serine could take place in rat brain. Four unidentified radioactive metabolites were found in the acid-soluble fraction in addition to l -[14C]serine.  相似文献   

6.
The effects of γ-aminobutyric acid (GABA), bicuculline and strychnine on the incorporation in vivo of 33Pi into phospholipids of rat brain were studied at 10 and 30 minutes after intracisternal injection of the radionuclide. GABA inhibited labeling of phospholipids in the three brain regions studied at both times. Bicuculline by itself had no significant effect on 33Pi incorporation, but totally blocked the inhibitory effect of GABA in all three brain regions. Strychnine by itself inhibited phospholipid labeling in the brain stem and forebrain, had no significant effect on GABA inhibition of 33Pi incorporation in the cerebellum and forebrain, and partially blocked the GABA effect in the brain stem. GABA inhibited 33Pi incorporation into phosphatidic acid, phosphatidylinositol, phosphatidyl choline and phosphatidyl ethanolamine but had no effect on phosphatidyl serine. The data suggest that the inhibitory effects of GABA on CNS phospholipid labeling are mediated specifically through GABA receptor sites.  相似文献   

7.
In the presence of ATP, Mg, and CoA-SH[1-14C]linoleic acid was incorporated into membrane phospholipids (P2 fraction and synaptosomes) prepared from rat brain cortex. The relative order for linoleate incorporation was: phosphatidylcholine >phosphatidylethanolamine>phosphatidylinositol>ethanolamine plasmalogen >phosphatidylserine. The incorporation of labeled linoleate into P2 fraction phospholipids was investigated in rats, aged 4, 16, and 90 days, after being subjected to ischemic and hypoxic conditions. With the exception of a small increase in the incorporation of the radioactivity into diacyl-GPC, little change in incorporation profile was observed with 4-day-old rats submitted to ischemic and hypoxic conditions. However, the incorporation of labeled linoleate into membrane phospholipids was decreased in 16-and 90-day-old rats after being subjected to ischemic and hypoxic conditions. Among the phospholipids, the decrease in incorporation of radioactivity was most prominent with ethanolamine plasmalogens and phosphatidylinositol although the radioactivity of phosphatidylcholine seemed to remain relatively constant. The decreased incorporation activity in these two age groups was noted along with concomitant increase in the FFA content, whereas an increase in FFA was not observed in the 4-day-old brain samples. Thus, the specific decrease in labeling of ethanolamine plasmalogens and phosphatidylinositol may be the result of increased enzymic degradation of these compounds after ischemic and hypoxic treatment. Furthermore, the decrease in incorporation of linoleate into membrane phospholipids may be due to an increase in the membrane, FFA pool which subsequently, gave a dilution of the labeled precursor.  相似文献   

8.
Abstract— Seventeen day old rats were injected intraocularly with a phospholipid precursor, [32P]phosphate, and a glycoprotein precursor, [3H]fucose. Animals were killed between 1 h and 21 days later, and structures of the visual pathway (retina, optic nerve, optic tract, lateral geniculate body, and superior colliculus) were dissected. Radioactivity in phospholipids ([32P] in solvent-extracted material) and in glycoproteins ([3H] in solvent-extracted residue) was determined. Incorporation of [3H]fucose into retinal glycoproteins peaked at 6–8 h. Labelled glycoproteins were present in superior colliculus by 2h after injection, indicating a rapid rate of transport; maximal labelling was at 8–10 h after injection. Incorporation of [32P]phosphate into retinal phospholipids peaked at 1 day after injection. Phospholipids were also rapidly transported since label was present in the superior colliculus by 3 h after injection: however, maximal labelling did not occur until 5–6 days. These results indicate that newly synthesized phospholipids enter a preexisting pool, part of which is later committed to transport at a rapid rate. Transported phospholipids were catabolized at the nerve endings with a maximum half-life of several days; there was minimal recycling of precursor label. Lipids were fractionated by thin-layer chromatography, and radioactivity in individual phospholipid classes determined. Choline and ethanolamine phosphoglycerides were the major transported phospholipids, together accounting for approx 85% of the total transported lipid radioactivity. At early time points, the ratio of radioactivity in choline phosphoglycerides to that in ethanolamine phosphoglycerides increased in structures progressively removed from the site of synthesis (retina) but by 2 days approached a constant value. In each structure, choline phosphoglyceride-ethanolamine phosphoglyceride radioactivity ratios decreased with time, rapidly at first, but plateaued by 2 days. These results indicate that choline phosphoglycerides are committed to transport sooner than ethanolamine phosphoglycerides. Some experiments were also conducted using [2-3H]glycerol as a phospholipid precursor. Results concerning incorporation of this precursor into individual phospholipid classes and their subsequent axonal transport were comparable to those obtained using [32P]phosphate, with the following exceptions: (a) incorporation of [2-3H]glycerol into retinal phospholipids was relatively rapid (near-maximal levels at 1 h after injection) although transport to the superior colliculus showed an extended time course very similar to [32P]-labelled lipids; (b) [2-3H]glycerol was somewhat less efficient than [32P]phosphate in labelling lipids committed to transport relative to labelling those which remained in the retina; and (c) [2-3H]glycerol did not label plasmalogens.  相似文献   

9.
Abstract— Paired iris smooth muscles from rabbits were prelabelled either in vitro by incubation for 30 min at 37°C in an iso-osmotic salt medium containing glucose, inositol, cytidine and 32Pi, or in vivo by administration of the isotope intracamerally into each eye 1 h before death. One of the pair was then incubated at 37°C for 10 min in an unlabelled medium containing 10 mm of 2-deoxyglucose and the other was incubated in the presence of norepinephrine (NE) or other adrenergic agents. Triphosphoinositide (TPI) was found to contain more 32P than any other phospholipid (almost 39% of total lipid radioactivity) in both the in vitro and in vivo experiments. NE (50 μm ) increased the loss of 32P from TPI (the TPI effect') by 28–30% in the 32P-labelled muscle. The TPI effect was accompanied by a significant increase in 32P labelling of phosphatidic acid (PA) and phosphatidylinositol (PI) but not phosphatidylcoholine. In this tissue the TPI effect was found to be mediated through α-adrenergic receptors. At 14 days after surgical sympathetic denervation, incorporation of 32P into phospholipids of the denervated muscle increased by an average of 6% over that of the normal muscle. The increase in TPI, PI and PA was 7%, 4% and 9% of that of the control respectively. There was little change in phospholipid content of the denervated muscle. The increase in sensitivity to NE (12.5 μm ) caused by denervation produced about 18% increase in the TPI effect and a 25% increase in the 32P labelling of PA, but not PI. In view of our previous findings on the requirement of the TPI effect for Ca2+, this observation could suggest that an increase in Ca2+ influx, following the interaction between the neurotransmitter and its receptor could stimulate TPI-phosphodiesterase, thus leading to increased PA via increased diglyceride. This denervation-induced supersensitivity to NE appears to be postsynaptic in nature. 32Pi was injected intracamerally into each eye 1 h before electrical stimulation of one of the sympathetic trunks. After stimulation for 30 min there was a significant loss of 32P from TPI and a significant increase in the labelling of PI and PA of the stimulated muscle. It is concluded that TPI and its enzymes could play an important role in neurotransmission at the neuromuscular junction of smooth muscle.  相似文献   

10.
Abstract: Labeled palmitic acid ([16-14C]palmitate) (0).5 μCi) was injected into rat sciatic nerves in vivo to characterize thc incorporation of this fatty acid into complex peripheral nerve lipids after time lapses of 1 min to 2 weeks. For the first 30 min after intraneural injection, the label was concentrated in nerve diglycerides. Thereafter, the relative diglyccride label declined rapidly, and phospholipid radioactivity rose steadily. After 120 min, phospholipids contained over 70% of the total lipid radioactivity. Among the phospholipids, phosphatidylcholine had the largest percentage of total phospholipid label, and acylation of lysophosphatidylcholine accounted for approximately 75% of this label. With time, there was conversion of [16-14C]palmitate to other long-chain fatty acids by elongation and desaturation. Phosphatidic acid was labeled also, suggesting the operation of the de novo biosynthetic mechanism. However, the specific radioactivity of 1,2-diacylglycerol was much higher than that of phosphatidic acid, suggesting phosphorylation of diglycerides by diglyceride kinase. After nerve section and survival of 2 h to 50 days, the injection of [16-14C]palmitate into the degenerating distal segment revealed an overall decline of phospholipid labeling and a commensurate increase of triglyceride radioactivity. Phosphatidylcholine in degenerating nerve contained a larger percentage of the fatty acid label than that in normal nerve. Almost all of the labeling was due to acylation of lysophosphatidylcholine, implying a much smaller contribution of the de novo pathway. Phosphatidylethanolamine and phosphatidylserine showed a relative loss of radioactivity. The changes were apparent at 1 day, but not at 2 h, suggesting loss of homeostatic control, presumably by interruption of axonal flow. An incidental observation was the stimulation of phosphatidylcholine biosynthesis by acylation of lysophosphatidylcholine in the contralateral unoperated sciatic nerve.  相似文献   

11.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

12.
The in vivo utilization ofd-3-hydroxy[3-14C]butyrate for oxidation in the whole animal and for lipid and amino acid synthesis in brain and spinal cord of overnight-fasted 15-day-old chicks has been measured. Appreciable amounts of injected 3-hydroxy[3-14C]butyrate were expired as14CO2 one hour after injection, the total amount of which increased with increasing dosages. Lipid synthesis was high in both brain and spinal cord. Free, cholesterol and phospholipids were the main lipids labeled in both, tissues, increasing with time after injection up to 120 min. The incorporation of radioactivity into triglycerides, esterified cholesterol and free fatty acids was not time-dependent. Increased concentrations of 3-hydroxybutyrate gave rise to higher synthetic rates both in brain and spinal cord The rate of amino acid synthesis was slightly higher in brain than in spinal cord. Glutamate was always the major amino acid formed.  相似文献   

13.
The plasticity of the membrane phospholipids in general and stimulated phosphoinositides turnover in particular are the subjects in a variety of neural paradigms studying the molecular mechanisms of neuronal changes under normal and pathological conditions. The regional modifiability of phospholipids (SM, PC, PS, PI, PA + DG, PE), polyphosphatidylinositides (PI, PIP, PIP2) and diacylglycerol-dependent incorporation of CDP-choline into phosphatidylcholine in the gray matter, white matter, dorsal horns, intermediate zone and ventral horns of the rabbit's spinal cord was studied. We have found 1. a significant increase in the concentration of SM, PC, PS, DG + PA and PE in the white matter in comparison to the gray one, 2. the highest concentration of the outer membrane leaflet-bound phospholipids in the dorsal horns and the inner membrane phospholipids in the intermediate zone in comparison to the gray matter, 3. a substantial amount of labeled polyphosphatidylinositides (poly-PIs) in the spinal cord white matter with descending order PIP > PI > PIP2, 4. similar incorporation of myo-2-[3H]inositol into all poly-PIs in ventral horns and intermediate zone, but a different, lower incorporation into PI and PIP and higher into PIP2 in the dorsal horns, 5. higher diacylglycerol-dependent incorporation of CDP-choline into PC in the regionally undivided gray matter than in the white matter taken as a whole, 6. the high proportion of diacylglycerol-dependent incorporation of CDP-choline into PC in both the ventral and dorsal horns, whereas that in the intermediate zone remained low.  相似文献   

14.
—The concentration of lipid- and non-lipid-bound sialic acid in the optic nerve tract and tectum and in whole brain of fish was estimated. The incorporation of sialic acid into gangliosides and non-lipid components was studied in fish by intracranial or intraocular application of N-[3H]acetylmannosamine or N-[3H]acetylglucosamine. After intracranial injection of N-[3H]acetylmannosamine autoradiography showed lipid- and non-lipid-bound radioactivity in the tectum opticum evenly distributed over regions of nerve fibres or perikarya indicating an ubiquitous incorporation of label. Sialic acid incorporation into glycoproteins after intracranial injection of N-acetylmannosamine always exceeded that into gangliosides. TCA-precipitable non-lipid material is labelled from intracranially applied N-acetylmannosamine in the sialic acid portion and also in nonsialic acid components, whereby the percentage of label in sialic acid increases reaching 90 per cent of the total radioactivity after 90 min. After intraocular application of N-[3H]acetylmannosamine, sialic acid in gangliosides was generally found to be more highly labelled than in glycoproteins. The ratio of radioactivity in gangliosides and glycoproteins increased with time of incubation and the distance from the eye. TCA-soluble radioactivity was translocated by fast axonal transport. Cycloheximide inhibited incorporation of N-acetylmannosamine-derived radioactivity into gangliosides and proteins but not the transport of TCA-soluble material, which accumulates in the tectum. After intraocular application of N-[3H]acetylglucosamine, TCA-soluble label arrives later in the optic tectum than radioactivity of high molecular weight components. The ratio of lipid to non-lipid-bound radioactivity does not change considerably with the time after injection or the distance from the eye. There was no accumulation of TCA-soluble radioactivity after the inhibition of incorporation into high molecular weight components.  相似文献   

15.
Comparative studies were undertaken on the in vivo and in vitro incorporation of [14C] ethanolamine, [3H] methionine and [14C] S-adenosyl-methionine into phosphatidylethanolamine (PhE) and phosphatidylcholine (PhC) of rat liver and brain. It was observed that brain can synthesize de novo PhC from PhE via the transmethylation pathway, however synthesis rates were (1) markedly lower than those of liver and (2) decreased significantly with age. In the choline-containing lipids more than 95% of the radioactivity was found in PhC. Studies on the localization of the radioactivity in PhC following the intracranial injection of [3H] methionine or [14C] ethanolamine revealed that both precursors are incorporated almost exclusively into the choline moiety of this phospholipid. There was significant labeling of PhC only when the precursors were administered intracranially and much less incorporation was observed with the systemic routes. Thus following the intravenous administration of [14C] ethanolamine, the specific radioactivities of liver PhE and PhC were up to 75 times as high as those of brain and 4 to 5 times as high in the organs of the 20-day old as those of the adult. In contrast, when this precursor was administered intracranially the specific radioactivities of both phospholipids in liver were only twice as high as those of brain. Although the short-and long-term time-course studies on the in vivo incorporation of [14C] ethanolamine and [3H] methionine into PhC of both organs could suggest a precursor-product relationship between the biosynthesis of this phospholipid in liver and brain, this apparent relationship could also be due to the high turnover of PhE in liver, with half-life of 2.87 hr, and its low turnover in brain, with half-life of 10.7 days. The present findings on the low rate of formation of PhC from PhE in brain coupled with the fact that this conversion declines sharply with age, especially when the isotopes are administered systemically, could explain the observation of previous investigators that the brain cannot synthesize its own choline and thus it must derive its choline from exogenous sources such as lipid-choline. It was concluded that the brain can synthesize its own choline; however it remains also dependent on liver and dietary choline which are probably transported into the brain as free choline.  相似文献   

16.
Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly β-oxidized and lost from brain phospholipids. Therefore, we examined if β-oxidation was necessary for maintaining low EPA levels by inhibiting β-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of 14C-palmitate, 14C-DHA, or 14C-EPA. MEP reduced the radioactivity of brain aqueous fractions for 14C-palmitate-, 14C-EPA-, and 14C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including β-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.  相似文献   

17.
—In growing rat brain, the specific activity of DNA at 12 h after the subcutaneous injection of [3H]thymidine underwent a sharp rise during the first 6 days of life, dropping just as precipitously by 15 days, thereafter continuing to decrease with increasing age. When [3H]thymidine was given to 6-day-old rats, a considerable amount was taken up immediately into the brain. Thymidine taken up into the acid-soluble fraction was readily phosphorylated to its nucleotides, thymidine mono-, di-, and triphosphate (TMP, TDP and TTP) within only 30 min following injection. The highest specific activity was found in TTP. The incorporation of of [3H]thymidine into DNA took place over a longer period of time after injection.  相似文献   

18.
Contreras  M. A.  Chang  M. C. J.  Kirkby  D.  Bell  J. M.  Rapoport  S. I. 《Neurochemical research》1999,24(7):833-841
Our laboratory has reported that pentobarbital-induced anesthesia reduced the incorporation of intravenously injected radiolabeled palmitic acid into brain phospholipids. To determine if this decrease reflected a pentobarbital-induced decrease in palmitate turnover in phospholipids, we applied our method and model to study net flux and turnover of palmitate in brain phospholipids (1). Awake, light and deep pentobarbital (25–70 mg/kg, iv) anesthetized rats were infused with [9,10-3H]palmitate over a 5 min period. Brain electrical activity was monitored by electroencephalography. An isoelectric electroencephalogram characterized deep pentobarbital anesthesia. Net incorporation rates (J FA,i ) and turnover rates (F i) of palmitate were calculated. J FA,i for palmitate incorporated into phospholipids was dramatically reduced by pentobarbital treatment in a dose-dependent manner, by 70% and 90% respectively for lightly and deeply anesthetized animals, compared with awake controls. Turnover rates for palmitate in total phospholipid and individual phospholipid classes were decreased by nearly 70% and 90% for lightly and deeply anesthetized animals, respectively. Thus, pentobarbital decreases, in a dose-dependent manner, the turnover of palmitate in brain phospholipids. This suggests that palmitate turnover is closely coupled to brain functional activity.  相似文献   

19.
The effects of cerebral ischemia, induced for 10 min by bilateral common carotid ligation in the Mongolian gerbil, on the brain and synaptosomal content of phospholipids and free fatty acids were measured. Moreover, the incorporation of arachidonic acid and oleoyl-CoA into phospholipids, as well as the respiration and the accumulation of45Ca, norepinephrine, dopamine, choline, glutamate, and -aminobutyrate in the ischemic brain synaptosomal fraction were studied. Analyses of lipids showed a drop in phospholipids content with concomitant increase of lysocompounds and free fatty acids in ischemic cerebral cortex. Disturbances in lipid metabolism including rapid phospholipids hydrolysis and changes in the incorporation of arachidonic acid into inositol and choline phosphoglycerides were also shown in the synaptosomal fraction of ischemic brain. The uptake of neurotransmitter substances, expressed as a percent of control value, was reduced 21% for norepinephrine, 40% for dopamine, 20% for choline, 24% for glutamate and 13% for -aminobutyrate in ischemic synaptosomes. There was no significant effect of ischemia on synaptosomal respiration and45Ca uptake in both control and high potassium media. the inhibition of neurotransmitter uptake in ischemic brain synaptosomes may be caused by the disturbance of fatty acid metabolism.  相似文献   

20.
Abstract—
  • 1 After intraperitoneal injection, there is negligible incorporation of [2-14C]-mevalonic lactone into the CNS of the adult rat.
  • 2 Mevalonic lactone injected into the CSF is quickly transferred to blood.
  • 3 Mevalonic lactone injected in the cistema magna or the lateral ventricle of the brain does not diffuse readily into the whole CSF. Spinal cord cholesterol is most heavily labelled after intracisternal injection, as is brain cholesterol after intraventricular administration.
  • 4 After intraventricular perfusion, the diffusion of mevalonic lactone into the ventricle opposite the side of the injection is increased when the rate of perfusion is doubled from 5 to 10 μ1/hr. After injection, optimal homogeneity is obtained if a large volume (70μl) is administered.
  • 5 An increase in the volume of injection from 70 μl to 130μl does not alter the distribution of activity between the left and right ventricles, nor does it increase the diffusion of mevalonic lactone from ventricle to spinal cord CSF.
  • 6 The mean yield of mevalonic lactone incorporation into brain cholesterol is much higher after injection than after perfusion of precursor into the lateral cerebral ventricle.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号