首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For mass production of microalgae outdoors to be justified as a significant commercial entity, solar energy should be utilized at a much higher efficiency, yielding greatly increased photosynthetic productivity than presently obtained. Development of photobioreactors to provide an answer for this challenge rests at the root and the very future of this biotechnology. Most available Photobioreactors yield increased volumetric outputs of cell mass, but the areal yield which relates to the photosynthetic efficiency is rather similar to that obtained in the basically inefficient open raceway, the most prevalent commercial reactor today. The key for efficient utilization of the super saturating solar irradiance existing outdoors rests in distributing it, in effect, to as large a number of cells per given volume in as high a frequency as possible. This unfolds the design principles underlying efficient utilization of high irradiance for photoautotrophic production of cell mass: Reactors should be maximally exposed to sun light, have a narrow light-path coupled with a safe mixing system designed to create fast, turbulent streaming for moving the algal cells in and out of the photic volume at maximal frequency. Reactors designed along these principles may support ultrahigh cell densities resulting in high volumetric as well as areal yields, hopefully expanding thereby the economic basis of microalgal biotechnology.  相似文献   

2.
A new tubular reactor for mass production of microalgae outdoors   总被引:5,自引:0,他引:5  
A novel reactor for outdoor production of microalgae is described. Air-lift is used for circulation of the culture in transparent tubes lying on the ground and interconnected by a manifold. Dissolved O2 is removed through a gas-separator placed 2.0 m above the tubes and water-spray is used for cooling. The manifold permits short-run durations between leaving the gas separator and re-entering it, preventing thereby damaging accumulation of dissolved oxygen. Day temperature control in summer is attained using water-spray. In winter, temperature in the tubes rises rapidly in the morning, as compared to an open raceway even if placed in a greenhouse. The number of hours along which optimal temperature prevails in the culture throughout the year increased significantly. Very high daily productivity computed on a volumetric basis (e.g. 550 mg dry wt l–1 culture) was obtained and preliminary observations indicate that a significantly higher output, e.g. 1500 mg dry wt l–1 d–1 is attainable. Much more research is required to assess the year-round, sustained productivity attainable in this reactor.  相似文献   

3.

Life cycle assessment (LCA) of indigenous freshwater microalgae, Scenedesmus dimorphus, cultivation in open raceway pond and its conversion to biodiesel and biogas were carried out. The LCA inventory inputs for the biogas scenario was entirely based on primary data obtained from algal cultivation (in pilot scale raceway pond), harvesting, and biogas production; while only the downstream processing involved in biodiesel production namely drying, reaction and purification were based on secondary data. Overall, eight scenarios were modeled for the integrated process involving: algae-based CO2 capture and downstream processing scenarios for biodiesel and biogas along with impact assessment of nutrient addition and extent of recycling in a life cycle perspective. The LCA results indicated a huge energy deficit and net CO2 negative in terms of CO2 capture for both the biodiesel and biogas scenarios, majorly due to lower algal biomass productivity and higher energy requirements for culture mixing. The sensitivity analysis indicated that variability in the biomass productivity has predominant effect on the primary energy demand and global warming potential (GWP, kg CO2 eq.) followed by specific energy consumption for mixing algal culture. Furthermore, the LCA results indicated that biogas conversion route from microalgae was more energy efficient and sustainable than the biodiesel route. The overall findings of the study suggested that microalgae-mediated CO2 capture and conversion to biodiesel and biogas production can be energy efficient at higher biomass productivity (> 10 g m−2 day−1) and via employing energy-efficient systems for culture mixing (< 2 W m−3).

  相似文献   

4.
《Biomass》1988,15(4):233-247
Progress has been made in the past decade in developing appropriate technology for microalgal mass cultivation. This review details basic requirements required in order to achieve high productivity and low cost of production. There is a need for a wide variety of algal species and strains that will favorably respond to the varying environmental conditions existing outdoors. Another essential requirement is for better bioreactors, either by improving existing open raceway types or developing tubular closed systems. The latter solution seems more promising. These developments must overcome the main limitation confronting the industry today which is the overall low areal yields which fall too short of the theoretical maximum and which are associated with scaling up microalgal culture to commercial size.  相似文献   

5.
Microalgae are photosynthetic microorganisms with potential for biofuel production, CO2 mitigation and wastewater treatment; indeed they have the capacity to assimilate pollutants in wastewaters. Light supply and distribution among the microalgae culture is one of the major challenges of photo-bioreactor design, with many studies focusing on microalgae culture systems such as raceway ponds (RWP), widely used and cost-effective systems for algal biomass production. This review focuses on possible improvements of the RWP design in order to achieve optimal microalgal growth conditions and high biomass productivities, to minimize energy consumption and to lower the capital costs of the pond. The improvement strategy is based on three aspects: (1) hydrodynamic characteristics of the raceway pond, (2) evaluation of hydrodynamic and mass transfer capacities of the pond and (3) design of the RWP. Finally, a possible optimal design for the RWP is discussed in the context of wastewater treatment.  相似文献   

6.
Native polyculture microalgae is a promising scheme to produce microalgal biomass as biofuel feedstock in an open raceway pond. However, predicting biomass productivity of native polycultures microalgae is incredibly complicated. Therefore, developing polyculture growth model to forecast biomass yield is indispensable for commercial-scale production. This research aims to develop a polyculture growth model for native microalgal communities in the Minamisoma algae plant and to estimate biomass and biocrude oil productivity in a semicontinuous open raceway pond. The model was built based on monoculture growth of polyculture species and it is later formulated using species growth, polyculture factor (kvalue), initial concentration, light intensity, and temperature. In order to calculate species growth, a simplified Monod model was applied. In the simulation, 115 samples of the 2014–2015 field dataset were used for model training, and 70 samples of the 2017 field dataset were used for model validation. The model simulation on biomass concentration showed that the polyculture growth model with kvalue had a root-mean-square error of 0.12, whereas model validation provided a better result with a root-mean-square error of 0.08. Biomass productivity forecast showed maximum productivity of 18.87 g/m2/d in June with an annual average of 13.59 g/m2/d. Biocrude oil yield forecast indicated that hydrothermal liquefaction process was more suitable with a maximum productivity of 0.59 g/m2/d compared with solvent extraction which was only 0.19 g/m2/d. With satisfactory root-mean-square errors less than 0.3, this polyculture growth model can be applied to forecast the productivity of native microalgae.  相似文献   

7.
Microalgae cultivation systems can be divided broadly into open ponds and closed photobioreactors. This study investigated the growth and biomass productivity of the halophilic green alga Tetraselmis sp. MUR-233, grown outdoors in paddle wheel-driven open raceway ponds and in a tubular closed photobioreactor (Biocoil) at a salinity of 7 % NaCl (w/v) between mid-March and June 2010 (austral autumn/winter). Volumetric productivity in the Biocoil averaged 67 mg ash-free dry weight (AFDW) L?1 day?1 when the culture was grown without CO2 addition. This productivity was 86 % greater, although less stable, than that achieved in the open raceway pond (36 mg L?1 day?1) grown at the same time in the autumn period. The Tetraselmis culture in the open raceway pond could be maintained in semi-continuous culture for the whole experimental period of 3 months without an additional CO2 supply, whereas in the Biocoil, under the same conditions, reliable semi-continuous culture was only achievable for a period of 38 days. However, stable semi-continuous culture was achieved in the Biocoil by the addition of CO2 at a controlled pH of ~7.5. With CO2 addition, the volumetric biomass productivity in the Biocoil was 85 mg AFDW L?1 day?1 which was 5.5 times higher than the productivity achieved in the open raceway pond (15 mg AFDW L?1 day?1) with CO2 addition and 8 times higher compared to the productivity in the open raceway pond without CO2 addition (11 mg AFDW L?1 day?1), when cultures were grown in winter. The illuminated area productivities highlight an alternative story and showed that the open raceway pond had a three times higher productivity (3,000 mg AFDW m?2 day?1) compared to the Biocoil (850 mg AFDW m?2 day?1). Although significant differences were found between treatments and cultivation systems, the overall average lipid content for Tetraselmis sp. MUR-233 was 50 % in exponential phase during semi-continuous cultivation.  相似文献   

8.
ABSTRACT

Microalgae have enormous potential as feedstock for biofuel production compared with other sources, due to their high areal productivity, relatively low environmental impact, and low impact on food security. However, high production costs are the major limitation for commercialization of algal biofuels. Strategies to maximize biomass and lipid production are crucial for improving the economics of using microalgae for biofuels. Selection of suitable algal strains, preferably from indigenous habitats, and further improvement of those ‘platform strains’ using mutagenesis and genetic engineering approaches are desirable. Conventional approaches to improve biomass and lipid productivity of microalgae mainly involve manipulation of nutritional (e.g. nitrogen and phosphorus) and environmental (e.g. temperature, light and salinity) factors. Approaches such as the addition of phytohormones, genetic and metabolic engineering, and co-cultivation of microalgae with yeasts and bacteria are more recent strategies to enhance biomass and lipid productivity of microalgae. Improvement in culture systems and the use of a hybrid system (i.e. a combination of open ponds and photobioreactors) is another strategy to optimize algal biomass and lipid production. In addition, the use of low-cost substrates such as agri-industrial wastewater for the cultivation of microalgae will be a smart strategy to reduce production costs. Such systems not only generate high algal biomass and lipid productivity, but are also useful for bioremediation of wastewater and bioremoval of waste CO2. The aim of this review is to highlight the advances in the use of various strategies to enhance production of algal biomass and lipids for biofuel feedstock.  相似文献   

9.
微藻废水生物处理技术研究进展   总被引:1,自引:0,他引:1  
微藻因生长速率快、细胞脂质含量高及具有生物隔离二氧化碳能力,已作为新一代生物质能源受到广泛关注.然而,投入大量淡水资源并需在生长期间持续提供营养物质已成为规模化培育微藻的主要障碍.将微藻培育系统与废水处理相结合是经济可行的污水资源化方案.基于微藻生长期间对氮磷等营养物质的利用机制,本文综述了微藻在各类废水生物处理过程中的应用情况,着重分析了其对废水中有机与无机化合物、重金属以及病原体的去除或抑制能力.同时,考察了废水初始营养物浓度、光照、温度、pH与盐度以及气体交换量等环境因素对微藻生长代谢的影响.此外,结合微藻规模化应用所面临的问题,对微藻废水处理技术的应用前景及发展方向进行了展望,旨在为水生态系统的建设与管理提供参考.  相似文献   

10.
The industrial exploitation of microalgae is characterized by the production of high‐value compounds. Optimization of the performance of microalgae culture systems is essential to render the process economically viable. For raceway systems, the optimization based on optimal control theory is rather challenging, because the process is by essence periodically forced and, as a consequence, optimization must be carried out in a periodic framework. In this article, we propose a simple operational criterion for raceway systems that when integrated in a strategy of closed‐loop control allows attaining biomass productivities very near to the theoretical maximal productivities. The strategy developed was tested numerically using a mathematical model of microalgae growth in raceways. The model takes into account the temporal variation of the environmental variables temperature and light intensity and their influence on microalgae growth. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 543–552, 2013  相似文献   

11.
In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale required for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.  相似文献   

12.
Oleaginous microalgae are considered as important feedstocks for production of biodiesel. Under nutrient stress conditions, microalgae have the ability to accumulate higher amount of lipids, which can be transesterified for the production of biodiesel. In the present investigation, four different phosphate application strategies were examined in five green microalgae (Tetradesmus obliquus, Tetradesmus lagerheimii, Chlorella vulgaris, Chlorella minutissima, and Chlamydomonas sp.) to achieve higher lipid productivity. Effects of those strategies such as phosphate-sufficient (Control), phosphate-starved approach (PSA), biphasic phosphate-starved approach (BPSA), and sequential phosphate addition (SPA) were studied under batch culture mode. The BPSA emerging as the best in terms of lipid productivity consisted of two biomass harvesting phases, which would lead to an increase in the overall cost of biodiesel production. On the other hand, the SPA with a 1/200th dose of N 11 medium, i.e., 0.4 mg L?1 of phosphate application in 3-day intervals, also resulted into higher lipid productivity which was equal to BPSA. Fatty acid composition of the biodiesel obtained from the microalgae was analyzed and the fuel characteristics were also evaluated. A profound (~14-fold) reduction in phosphorus requirements under the SPA mode with higher lipid productivity ensured qualitative biodiesel production and a lesser amount of phosphorus release, thus making the process eco-friendly.  相似文献   

13.
This work represents an attempt to assess the relative contribution of the factors limiting productivity ofSpirulina platensis in open raceways throughout the year. Temperature of the culture during daylight exerted the predominant effect on productivity and elevating the temperature resulted in a significant rise in productivity even in summer. Photoinhibition had a decisive role in summer in determining productivity ofSpirulina in open raceways in that growth almost ceased after mid-day. Contamination by other microorganisms, particularlyS. minor andChlorella sp. was estimated to reduce the net biomass yield by at least 15 to 20%, but measures to curtail the establishment of these species in the raceway have been devised. The effect of harvest time during the day on the yield of dry mass was examined: no conclusion could be drawn except in mid-summer, when evening harvesting resulted in a significant increase in the output rate of dry weight over morning harvesting.It was estimated that in a subtropical climate with little cloudiness, it should be readily possible to obtain an annual output rate of dry mass of ca. 60 to 70 t ha–1. Such output, however, which would reduce very substantially the cost of production to-date, is possible only if the optimal temperature forSpirulina can be maintained throughout daylight, photoinhibition essentially controlled, harvesting in summer performed in the evening, and night-loss of dry mass as well as the extent of contamination by other cyanobacteria or microalgae can be kept low. The pronounced daily fluctuations in the output rate at peak productivity in summer suggest that when environmental limitations of growth are minimal, other limitations become dominant. These should be identified to facilitate an even greater increase in the productivity ofSpirulina in outdoor cultures.  相似文献   

14.
One of the principal challenges for large scale production of microalgae is the high costs of biomass production. Aiming for minimize this problem, microalgal biodiesel production should focus on outdoors cultures, using available solar light and allowing lower energy cost process. Testing species that proved to be common and easy to culture may be a good approach in this process. The present work reports indoor-outdoor cultures of Phaeodactylum tricornutum using different bioreactors types, using cell growth, biochemical composition, and the profiles of the fatty acids produced as the parameters to test the optimization processes. The results show that the use of outdoor cultures is a good choice to obtain P. tricornutum biomass with a good potential for biodiesel production. The microalgae produced reached better growth efficiency, major lipid content and showed an increment in the percentage of saturated fatty acids (required on the biodiesel production) respect indoor cultures. These results are important to show the relevance of using outdoor cultures as a way to improve the efficiency and the energetic balance of the biodiesel production with P. tricornutum algae.  相似文献   

15.
Previously, we have successfully produced biodiesel using the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway open pond. Here, we investigated the effects of closed photobioreactors and operating variables on cell concentration and lipid content of the microalga to increase its lipid productivity. The flatplate photobioreactor (FPP) showed higher performance than bubble column and air-lift photobioreactors. Among the variables evaluated, light intensity, aeration rate, and carbon dioxide feeding significantly influenced cell concentration, whereas a simultaneous increase in light intensity and aeration rate, as well as carbon dioxide feeding noticeably increased the lipid content. The lipid productivity in the FPP was 26.7 × 10-3 g/L/day, which was 16.6 times higher than that produced by the microalga cultivated in the raceway pond, 4.8 times higher than that from the simple flask-grown control culture, and 2.1 times higher than that from the FPP under initial conditions.  相似文献   

16.
Feng P  Deng Z  Hu Z  Fan L 《Bioresource technology》2011,102(22):10577-10584
Culturing microalgae using natural sunlight is an effective way to reduce the cost of microalgae-based biodiesel production. In order to evaluate the feasibility of culturing Chlorella zofingiensis outdoors for biodiesel production, effects of nitrogen limitation and initial cell concentration on growth and lipid accumulation of this alga were investigated in 60 L flat plate photobioreactors outdoors. The highest μmax and biomass productivity obtained was 0.994 day(-1) and 58.4 mg L(-1)day(-1), respectively. The lipid content was much higher (54.5% of dry weight) under nitrogen limiting condition than under nitrogen sufficient condition (27.3%). With the increasing initial cell concentrations, the lipid contents declined, while lipid concentrations and productivities increased. The highest lipid content, lipid concentration, and lipid productivity obtained was 54.5%, 536 mg L(-1) and 22.3 mg L(-1)day(-1), respectively. This study demonstrated that it was possible to culture C. zofingiensis under outdoor conditions for producing biodiesel feedstock.  相似文献   

17.
Optimization of conditions for outdoor production of the nitrogen-fixing cyanobacterium Anabaena sp. ATCC 33047 has been pursued. In open ponds operated under semi-continuous regime biomass productivity values achieved ranged from 9 g (dry weight) m(-2) per day, in winter, to over 20 g m(-2) per day, in summer, provided that key operation parameters, including cell density, were optimized. Under these conditions the efficiency of solar energy conversion by the cells was fairly constant throughout the year, with photosynthetic efficiency values higher than 2%. The cyanobacterial biomass was rich in high-value phycobiliproteins, namely allophycocyanin and phycocyanin, for which open cultures of marine Anabaena represent a most interesting production system. The performance of Anabaena cultures operated under continuous regime in a closed tubular reactor has also been assessed outdoors, in winter. Biomass productivity values similar to those obtained in the ponds have been recorded for the closed system. Additionally, under these conditions, the cells excreted to the medium large amounts of a previously characterized exopolysaccharide, at production rates as high as 35 g m(-2) per day (1.4 g l(-1) per day). Properly operated closed cultures of this strain of Anabaena appear most suitable for outdoor mass production of valuable extracellular polysaccharides.  相似文献   

18.
The relationships between areal (g m(-2) per day) and volumetric (g l(-1) per day) productivity of Nannochloropsis sp. as affected by the light-path (ranging from 1.3 to 17.0 cm) of a vertical flat plate glass photobioreactor were elucidated. In general, the shorter the length of the light-path (LP), the smaller the areal volume and the higher the volumetric productivity. The areal productivity in relation to the light-path, in contrast, yielded an optimum curve, the highest areal productivity was obtained in a 10 cm LP reactor, which is regarded, therefore, optimal for mass production of Nannochloropsis. An attempt was made to identify criteria by which to assess the efficiency of a photobioreactor in utilizing strong incident energy. Two basic factors which relate to reactor efficiency and its cost-effectiveness have been defined as (a) the total illuminated surface required to produce a set quantity of product and (b) culture volume required to produce that quantity. As a general guide line, the lower these values are, the more efficient and cost-effective the reactor would be. An interesting feature of this analysis rests with the fact that an open raceways is as effective in productivity per illuminated area as a flat-plate reactor with an optimal light path, both cultivation systems requiring ca. 85 m(2) of illuminated surface to produce 1 kg dry cell mass of Nannochloropsis sp. per day. The difference in light utilization efficiency between the two very different production systems involves three aspects - first, the open raceway requires ca. 6 times greater volume than the 10 cm flat plate reactor to produce the same quantity of cell-mass. Second, the total ground area (i.e. including the ground area between reactors) for the vertical flat plate reactor is less than one half of that occupied by an open raceway, indicating the former is more efficient, photosynthetically, compared with the latter. Finally, the harvested cell density is close to one order of magnitude higher in the flat plate reactor, which carries economic significance. The advantage of vertical lamination of photoautotrophic cells provided by vertical plate reactors, is thereby clearly seen. The optimal population density (i.e. which results in the highest areal productivity) in the 10 cm plate reactor was obtained by a daily harvest of 10% of culture volume, yielding an annual average of ca. 12.1 g dry wt. m(-2) per day (on the basis of the overall illuminated reactor surfaces, i.e. front and back) or 240 mg l(-1) per day.  相似文献   

19.
Cultivation of microalgae in closed photobioreactors suffers from high temperatures, whereas in open raceway ponds the optimal temperature is seldom reached. With an integrated device coupling a raceway pond with a suitably sized and positioned closed system (alveolar panel), the heat accumulated in the panel was efficiently transferred to the pond and a near-optimum temperature regimen for Arthrospira platensis was maintained, with no need for any additional cooling device. The productivity obtained in the integrated system was higher than the sum of the productivities (g reactor−1 day−1) of the pond and panel systems operating separately. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers’ demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号