首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
Rs-AFPs are antifungal proteins, isolated from radish (Raphanus sativus) seed or leaves, which consist of 50 or 51 amino acids and belong to the plant defensin family of proteins. Four highly homologous Rs-AFPs have been isolated (Rs-AFP1-4). The structure of Rs-AFP1 consists of three beta-strands and an alpha-helix, and is stabilized by four cystine bridges. Small peptides deduced from the native sequence, still having biological activity, are not only important tools to study structure-function relationships, but may also constitute a commercially interesting target. In an earlier study, we showed that the antifungal activity of Rs-AFP2 is concentrated mainly in the beta2-beta3 loop. In this study, we synthesized linear 19-mer peptides, spanning the entire beta2-beta3 loop, that were found to be almost as potent as Rs-AFP2. Cysteines, highly conserved in the native protein, are essential for maintaining the secondary structure of the protein. Surprisingly, in the 19-mer loop peptides, cysteines can be replaced by alpha-aminobutyric acid, which even improves the antifungal potency of the peptides. Analogous cyclic 19-mer peptides, forced to adopt a hairpin structure by the introduction of one or two non-native disulfide bridges, were also found to possess high antifungal activity. The synthetic 19-mer peptides, like Rs-AFP2 itself, cause increased Ca2+ influx in pregerminated fungal hyphae.  相似文献   

2.
In response to an experimental infection, the lepidopteran Heliothis virescens produces an antifungal protein named heliomicin. Heliomicin displays sequence similarities with antifungal plant defensins and antibacterial or antifungal insect defensins. To gain information about the structural elements required for either antifungal or antibacterial activity, heliomicin and selected point-mutated variants were expressed in yeast as fusion proteins. The effects of mutations, defined by comparing the primary structure of heliomicin with the sequences of members of the insect defensin family, were analyzed using antibacterial and antifungal assays. One of the variants shows significant activity against Gram-positive bacteria while remaining efficient against fungi. The three-dimensional structures of this variant and of the wild-type protein were determined by two-dimensional (1)H NMR to establish a correlation between structure and antibacterial or antifungal activity. Wild-type and mutated heliomicins adopt a similar scaffold, including the so-called cysteine-stabilized alphabeta motif. A comparison of their structures with other defensin-type molecules indicates that common hydrophobic characteristics can be assigned to all the antifungal proteins. A comparative analysis of various structural features of heliomicin mutant and of antibacterial defensins enables common properties to be assessed, which will help to design new mutants with increased antibacterial activity.  相似文献   

3.
Drosomycin is the first antifungal protein characterized recently among the broad family of inducible peptides and proteins produced by insects to respond to bacterial or septic injuries. It is a small protein of 44 amino acid residues extracted from Drosophila melanogaster that exhibits a potent activity against filamentous fungi. Its three-dimensional structure in aqueous solution was determined using 1H 2D NMR. This structure, involving an alpha-helix and a twisted three-stranded beta-sheet, is stabilized by three disulfide bridges. The corresponding Cysteine Stabilized alpha beta (CS alpha beta) motif, which was found in other defense proteins such as the antibacterial insect defensin A, short- and long-chain scorpion toxins, as well as in plant thionins and potent antifungal plant defensins, appears as remarkably persistent along evolution.  相似文献   

4.
Two novel classes of antifungal proteins were isolated from radish seeds. The first class consists of two homologous proteins (Rs-AFP1 and Rs-AFP2) that were purified to homogeneity. They are highly basic oligomeric proteins composed of small (5-kDa) polypeptides that are rich in cysteine. Both Rs-AFPs have a broad antifungal spectrum and are among the most potent antifungal proteins hitherto characterized. In comparison with many other plant antifungal proteins, the activity of the Rs-AFPs is less sensitive to the presence of cations. Moreover, their antibiotic activity shows a high degree of specificity to filamentous fungi. The amino-terminal regions of the Rs-AFPs show homology with the derived amino acid sequences of two pea genes specifically induced upon fungal attack, to gamma-thionins and to sorghum alpha-amylase inhibitors. The radish 2S storage albumins were identified as the second novel class of antifungal proteins. All isoforms inhibit growth of different plant pathogenic fungi and some bacteria. However, their antimicrobial activities are strongly antagonized by cations.  相似文献   

5.
Lepidoptera have been reported to produce several antibacterial peptides in response to septic injury. However, in marked contrast to other insect groups, no inducible antifungal molecules had been described so far in this insect order. Surprisingly, also cysteine-rich antimicrobial peptides, which predominate in the antimicrobial defense of other insects, had not been discovered in Lepidoptera. Here we report the isolation from the hemolymph of immune induced larvae of the lepidopteran Heliothis virescens of a cysteine-rich molecule with exclusive antifungal activity. We have fully characterized this antifungal molecule, which has significant homology with the insect defensins, a large family of antibacterial peptides directed against Gram-positive strains. Interestingly, the novel peptide shows also similarities with the antifungal peptide drosomycin from Drosophila. Thus, Lepidoptera appear to have built their humoral immune response against bacteria on cecropins and attacins. In addition, we report that Lepidoptera have conferred antifungal properties to the well conserved structure of antibacterial insect defensins through amino acid replacements.  相似文献   

6.
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an alpha-helix and a triple-stranded antiparallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized alphabeta motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure-activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP.  相似文献   

7.
The solution structure of termicin from hemocytes of the termite Pseudacanthotermes spiniger was determined by proton two-dimensional nuclear magnetic resonance spectroscopy and molecular modeling techniques. Termicin is a cysteine-rich antifungal peptide also exhibiting a weak antibacterial activity. The global fold of termicin consists of an alpha-helical segment (Phe4-Gln14) and a two-stranded (Phe19-Asp25 and Gln28-Phe33) antiparallel beta-sheet forming a "cysteine stabilized alphabeta motif" (CSalphabeta) also found in antibacterial and antifungal defensins from insects and from plants. Interestingly, termicin shares more structural similarities with the antibacterial insect defensins and with MGD-1, a mussel defensin, than with the insect antifungal defensins such as drosomycin and heliomicin. These structural comparisons suggest that global fold alone does not explain the difference between antifungals and antibacterials. The antifungal properties of termicin may be related to its marked hydrophobicity and its amphipatic structure as compared to the antibacterial defensins. [SWISS-PROT accession number: Termicin (P82321); PDB accession number: 1MM0.]  相似文献   

8.
Tenecin 3, an antifungal protein, previously isolated from the insect Tenebrio molitor, inhibits growth of the fungus Candida albicans. However, the antifungal mechanism and functions of tenecin 3 remain unknown. As an initial step to study the mechanism and functions, physical and structural properties of tenecin 3 were examined by circular dichroism (CD) analysis and 2D nuclear overhauser effect spectroscopy. These analyses suggest that tenecin 3 has a propensity of random structure with very loose turn-like elements. The CD results also indicate that this random structural propensity is not significantly affected by temperature, pH, and by the presence of organic solvents or sodium dodecyl sulfate (SDS) micelles. However, the hydrodynamic studies suggest that tenecin 3 is not in extended form in spite of its random structural feature.  相似文献   

9.
Plant defensins are a family of small Cys-rich antifungal proteins that play important roles in plant defense against invading fungi. Structures of several plant defensins share a Cys-stabilized alpha/beta-motif. Structural determinants in plant defensins that govern their antifungal activity and the mechanisms by which they inhibit fungal growth remain unclear. Alfalfa (Medicago sativa) seed defensin, MsDef1, strongly inhibits the growth of Fusarium graminearum in vitro, and its antifungal activity is markedly reduced in the presence of Ca(2+). By contrast, MtDef2 from Medicago truncatula, which shares 65% amino acid sequence identity with MsDef1, lacks antifungal activity against F. graminearum. Characterization of the in vitro antifungal activity of the chimeras containing portions of the MsDef1 and MtDef2 proteins shows that the major determinants of antifungal activity reside in the carboxy-terminal region (amino acids 31-45) of MsDef1. We further define the active site by demonstrating that the Arg at position 38 of MsDef1 is critical for its antifungal activity. Furthermore, we have found for the first time, to our knowledge, that MsDef1 blocks the mammalian L-type Ca(2+) channel in a manner akin to a virally encoded and structurally unrelated antifungal toxin KP4 from Ustilago maydis, whereas structurally similar MtDef2 and the radish (Raphanus sativus) seed defensin Rs-AFP2 fail to block the L-type Ca(2+) channel. From these results, we speculate that the two unrelated antifungal proteins, KP4 and MsDef1, have evolutionarily converged upon the same molecular target, whereas the two structurally related antifungal plant defensins, MtDef2 and Rs-AFP2, have diverged to attack different targets in fungi.  相似文献   

10.
A 23-kDa antifungal thaumatin-like protein was isolated and purified from Cassia didymobotrya (Fres.) cell cultures for the first time. The protein was secreted in the culture medium, but it could be also isolated after elution of whole cells with a 0.5 M CaCl(2) solution. Treatment of the cells with laminarin oligosaccharides or salicylic acid, but not with NaCl, resulted in enhancement of expression of the protein. A rapid purification protocol was used based on cationic exchange chromatography. The protein, with a highly basic character (pI 10), has an exact molecular mass of 23034 Da, as determined by MALDI-ToF mass spectrometry analysis. N-terminal sequencing of the intact polypeptide and the sequencing of two internal tryptic peptides indicated significant identity with other thaumatin-like proteins (TLP). The protein exerted antifungal activity towards some Candida species showing EC(50) values comparable to those of other antifungal TLPs. The collected data lead to classify this TLP as a new PR-5 protein.  相似文献   

11.
Osmotin, a pathogenesis-related antifungal protein, is relevant in induced plant immunity and belongs to the thaumatin-like group of proteins (TLPs). This article describes comparative structural and functional analysis of the two osmotin isoforms cloned from Phytophthora-resistant wild Piper colubrinum. The two isoforms differ mainly by an internal deletion of 50 amino acid residues which separates them into two size categories (16.4 kDa-PcOSM1 and 21.5 kDa-PcOSM2) with pI values 5.6 and 8.3, respectively. Recombinant proteins were expressed in E. coli and antifungal activity assays of the purified proteins demonstrated significant inhibitory activity of the larger osmotin isoform (PcOSM2) on Phytophthora capsici and Fusarium oxysporum, and a markedly reduced antifungal potential of the smaller isoform (PcOSM1). Homology modelling of the proteins indicated structural alterations in their three-dimensional architecture. Tertiary structure of PcOSM2 conformed to the known structure of osmotin, with domain I comprising of 12 β-sheets, an α-helical domain II and a domain III composed of 2 β-sheets. PcOSM1 (smaller isoform) exhibited a distorted, indistinguishable domain III and loss of 4 β-sheets in domain I. Interestingly, an interdomain acidic cleft between domains I and II, containing an optimally placed endoglucanase catalytic pair composed of Glu-Asp residues, which is characteristic of antifungal PR5 proteins, was present in both isoforms. It is well accepted that the presence of an acidic cleft correlates with antifungal activity due to the presence of endoglucanase catalytic property, and hence the present observation of significantly reduced antifungal capacity of PcOSM1 despite the presence of a strong acidic cleft, is suggestive of the possible roles played by other structural features like domain I or/and III, in deciding the antifungal potential of osmotin.  相似文献   

12.
The crystal structure of tobacco PR-5d, an antifungal thaumatin-like protein isolated from cultured tobacco cells, was determined at the resolution of 1.8 A. The structure consists of 208 amino acid residues and 89 water molecules with a crystallographic R-factor of 0.169. The model has good stereochemistry, with respective root-mean-square deviations from the ideal values for bond and angle distances of 0.007 A and 1.542 degrees. Of the homologous PR-5 proteins, only those with antifungal activity had a common motif, a negatively charged surface cleft. This cleft is at the boundary between domains I and II, with a bottom part consisting of a three-stranded antiparallel beta-sheet in domain I. The acidic residues located in the hollow of the cleft form the beta-sheet region. Sequence and secondary structure analyses showed that the amino acid residues comprising the acidic cleft of PR-5d are conserved among other antifungal PR-5 proteins. This is the first report on the high-resolution crystal structure of an antifungal PR-5 protein. This structure provides insight into the function of pathogenesis-related proteins.  相似文献   

13.
A novel basic protein with antifungal activity was isolated from the seeds of Ginkgo biloba and purified to homogeneity. The protein inhibited the growth of some fungi (Fusarium oxysporum, Trichoderma reesei, and Candida albicans) but did not exhibit antibacterial action against Escherichia coli. Furthermore, this protein showed weak inhibitory activity against the aspartic protease pepsin. To design primers for gene amplification, the NH(2)-terminal and partial internal amino acid sequences were determined using peptides obtained from a tryptic digest of the oxidized protein. The full-length cDNA of the antifungal protein was cloned and sequenced by RT-PCR and rapid amplification of cDNA ends (RACE). The cDNA contained a 402-bp open reading frame encoding a 134-aa protein with a potential signal peptide (26 residues), suggesting that this protein is synthesized as a preprotein and secreted outside the cells. The antifungal protein shows approximately 85% identity with embryo-abundant proteins from Picea abies and Picea glauca at the amino acid level; however, there is no homology between this protein and other plant antifungal proteins, such as defensin, and cyclophilin-, miraculin- and thaumatin-like proteins.  相似文献   

14.
The structure of a thaumatin-like protein from banana (Musa acuminata) fruit, an allergen with antifungal properties, was solved at 1.7-A-resolution, by X-ray crystallography. Though the banana protein exhibits a very similar overall fold as thaumatin it markedly differs from the sweet-tasting protein by the presence of a surface exposed electronegative cleft. Due to the presence of this electronegative cleft, the banana thaumatin-like protein (Ban-TLP) acquires a strong (local) electronegative character that eventually explains the observed antifungal activity. Our structural analysis also revealed the presence of conserved residues of exposed epitopic determinants that are presumably responsible for the allergenic properties of banana fruit towards susceptible individuals, and provided evidence that the Ban-TLP shares some structurally highly conserved IgE-binding epitopes with thaumatin-like proteins from fruits or pollen from other plants. In addition, some overlap was detected between the predicted IgE-binding epitopes of the Ban-TLP and IgE-binding epitopes previously identified in the mountain cedar Jun a 3 TLP aeroallergen. The presence of these common epitopes offers a molecular basis for the cross-reactivity between aeroallergens and fruit allergens.  相似文献   

15.
S.K. Lam  T.B. Ng 《Phytomedicine》2009,16(2-3):172-180
The intent was to isolate an antifungal protein from seeds of the passion fruit (Passiflora edulis) and to compare its characteristics with other antifungal proteins and bovine β-lactoglobulin in view of its N-terminal amino acid sequence similarity to β-lactoglobulin. The isolation procedure entailed ion-exchange chromatography on Q-Sepharose, hydrophobic interaction chromatography on Phenyl-Sepharose, ion-exchange chromatography on DEAE-cellulose, and FPLC-gel filtration on Superdex 75. The isolated 67-kDa protein, designated as passiflin, exhibited an N-terminal amino acid sequence closely resembling that of bovine β-lactoglobulin. It is the first antifungal protein found to have a β-lactoglobulin-like N-terminal sequence. Its dimeric nature is rarely found in antifungal proteins. It impeded mycelial growth in Rhizotonia solani with an IC50 of 16 μM and potently inhibited proliferation of MCF-7 breast cancer cells with an IC50 of 15 μM. There was no cross-reactivity of passiflin with anti-β-lactoglobulin antiserum. Intact β-lactoglobulin lacks antifungal and antiproliferative activities and is much smaller in molecular size than passiflin. However, it has been reported that hydrolyzed β-lactoglobulin shows antifungal activity. The data suggest that passiflin is distinct from β-lactoglobulin.  相似文献   

16.
An antifungal protein with a novel N-terminal sequence GVGAAYGCFG and a molecular mass of 31 kDa was isolated from the legumes of the sugar snap pea Pisum sativum var. macrocarpon. The protein, designated pisumin, exhibited antifungal activity against Coprinus comatus and Pleurotus ostreatus and much weaker activity against Fusarium oxysporum and Rhizoctonia solani. Pisumin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC(50) of 6 microM. Pisumin was similar to other leguminous antifungal proteins in that it was adsorbed on Affi-gel blue gel and CM-Sepharose.  相似文献   

17.
18.
We have purified and characterized a protein from the water-soluble fraction of wheat kernel (Triticum aestivum cv. S. Pastore) consisting of a single polypeptide chain blocked at its N-terminus by a pyroglutamate residue; the complete amino acid sequence has been determined by automated sequence analysis performed on peptide fragments obtained by enzymatic hydrolyses of the protein. Homology studies have shown that this protein is very similar (97% sequence identity) to the previously characterized wheatwin1 as well as to other members of the pathogenesis-related (PR) proteins of class 4; in analogy with wheatwin1, we have termed this protein wheatwin2. Both wheatwin1 and wheatwin2 have specific antifungal activity toward the wide-host-range pathogenBotrytis cinerea and the wheat-specific pathogenic fungi of wheatFusarium culmorum andFusarium graminearum of groups 1 and 2. On the basis of their structural and functional properties, wheatwin1 and wheatwin2 can be classified as members of the PR4 protein family; this represents the first report concerning the presence of this kind of protein in wheat.  相似文献   

19.
Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, a novel gene Ltp 3F1 encoding an antifungal protein from wheat (Sumai 3) was subcloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation followed by gel permeation chromatography. Molecular phylogeny analyses of wheat Ltp 3F1 gene showed a strong identity to other plant LTPs. Predicted three-dimensional structural model showed the presence of 6 α-helices and 9 loop turns. The active site catalytic residues Gly30, Pro50, Ala52 and Cys55 may be suggested for catalyzing the reaction involved in lipid binding. SDS–PAGE analysis confirmed the production of recombinant fusion protein. The LTP fusion protein exhibited a broad-spectrum antifungal activity against Alternaria sp., Rhizoctonia solani, Curvularia lunata, Bipolaris oryzae, Cylindrocladium scoparium, Botrytis cinerea and Sarocladium oryzae. Gene cassette with cyanamide hydratase (cah) marker and Ltp 3F1 gene was constructed for genetic transformation in tobacco. Efficient regeneration was achieved in selective media amended with cyanamide. Transgenic plants with normal phenotype were obtained. Results of PCR and Southern, Northern and Western hybridization analyses confirmed the integration and expression of genes in transgenic plants. Experiments with detached leaves from transgenic tobacco expressing Ltp 3F1 gene showed fungal resistance. Due to the innate potential of broad-spectrum antifungal activity, wheat Ltp 3F1 gene can be used to enhance resistance against fungi in crop plants.  相似文献   

20.
The antifungal protein AFP is a small polypeptide of 51 amino acid residues secreted by Aspergillus giganteus. Its potent activity against phytopathogenic fungi converts AFP in a promising tool in plant protection. However, no data have been reported regarding the mode of action of AFP. The three-dimensional structure of this protein, a small and compact beta barrel composed of five highly twisted antiparallel beta strands, displays the characteristic features of the oligonucleotide/oligosaccharide binding (OB fold) structural motif. A comparison of the structures of AFP and OB fold-containing proteins shows this structural similarity despite the absence of any significant sequence similarity. AFP, like most OB fold-containing proteins, binds nucleic acids. The protein promotes charge neutralization and condensation of DNA as demonstrated by electrophoretic mobility shift and ethidium bromide displacement assays. Nucleic acid produces quenching of the protein fluorescence emission. This nucleic acid interacting ability of AFP may be related to the antifungal activity of this small polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号