首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27-3H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27-3H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27-3H[vitamin D2 and 1,25-dihydroxy-[26,27-3H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27-3H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3.  相似文献   

2.
Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo   总被引:2,自引:0,他引:2  
Anephric, vitamin D-deficient male rats were injected with a physiologic dose of 25-hydroxy[26,27-3H]vitamin D3 (specific activity of 160 Ci/mmol), and 18-20 h later, intestine, bone, and serum were analyzed by high performance liquid chromatography for 1,25-dihydroxy-[26,27-3H]vitamin D3. Identical studies were carried out using sham-operated rats and rats with ligated ureters. No 1,25-dihydroxy[26,27-3H]vitamin D3 was detected in the tissues from anephric rats, while large amounts were detected in sham-operated and ureteric ligated controls. This result demonstrates that in the nonpregnant rat, 1,25-dihydroxyvitamin D3 is either not synthesized or is synthesized in vanishingly small amounts in bone and intestine in vivo, casting considerable doubt of the physiological importance of reports of in vitro synthesis of 1,25-dihydroxyvitamin D3 by cells in culture derived from bone and elsewhere.  相似文献   

3.
A synthesis of radiochemically pure 25-hydroxy[26,27-3H]vitamin D3 with a specific activity of 160 Ci/mmol is reported. The structure and biological activity of the radiolabeled compound was verified by comigration on high-pressure liquid chromatography with synthetic 25-hydroxyvitamin D3 to constant specific activity, and by conversion in vitro to 1α,25-dihydroxy[26,27-3H]vitamin D3 with the chick kidney 1α-hydroxylase.  相似文献   

4.
24R,25-Dihydroxy-[6,19,19-3H]vitamin D3 with a specific activity of 54 Ci/mmol and 24R,25-dihydroxy-[6,19,19-2H]vitamin D3 with 2.6 deuterium atoms/mol were synthesized in four steps starting from 24R,25-Dihydroxyvitamin D3 via its sulfur dioxide adduct.  相似文献   

5.
The in vivo side-chain oxidation of 1 alpha,25-dihydroxyvitamin D3 was investigated by using a double-label radiotracer technique. Rats dosed with 1 alpha,25-dihydroxy-[3 alpha-3H]vitamin D3 and 1 alpha,25-dihydroxy[26,27-14C]vitamin D3 produced compounds with a high 3H/14C ratio. These compounds were found in sizable quantities in intestine and liver within 3 h after dosing. The major side-chain oxidized metabolite migrated as an acid on DEAE-Sephadex chromatography and contained no 14C. Methyl esterification of this compound with diazomethane proceeded in good yield and rendered the compound more amenable to chromatographic purification. The metabolite was isolated in several steps from rats dosed with 1 microgram of 1 alpha,25-dihydroxy[3 alpha-3H]vitamin D3. The metabolite was obtained in pure form as the methyl ester and was positively identified as 1 alpha,3 beta-dihydroxy-24-nor-9,10-seco-5,7,10(19)cholatrien-23-oic acid. The trivial name calcitroic acid is proposed for this major side-chain oxidized metabolite of 1,25-dihydroxyvitamin D3.  相似文献   

6.
Endres B  Kato S  DeLuca HF 《Biochemistry》2000,39(8):2123-2129
The metabolism of 1alpha,25-dihydroxyvitamin D(3) was studied in vitamin D receptor-ablated mice following the administration of a physiological dose of 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3). The degradation of 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3) in the vitamin D receptor null mutant mice was substantially reduced compared to the wild-type control mice. At 24 h postadministration of radiolabeled 1alpha,25-dihydroxyvitamin D(3) more than 50% of the radioactivity was recovered unmetabolized, whereas in wild-type mice nearly all of the 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3) was degraded. In wild-type mice three polar metabolites other than 1alpha,25-dihydroxyvitamin D(3) were detected and identified on straight-phase and reverse-phase high-performance liquid chromatography as 1alpha,24(R),25-trihydroxy-[26,27-(3)H]vitamin D(3), 1alpha,25(S),26-trihydroxy-[26,27-(3)H]vitamin D(3), and (23S, 25R)-1alpha,25-dihydroxy-[(3)H]vitamin D(3)-26,23-lactone. Only one metabolite was detected in the plasma and kidneys of vitamin D receptor null mutant mice at 3 h following an intrajugular dose of 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3). This metabolite was clearly identified as 1alpha,25(S),26-trihydroxy-[26,27-(3)H]vitamin D(3) by comigration on two HPLC systems and periodate cleavage reaction. At 6, 12, and 24 h postinjection 1alpha,24(R), 25-trihydroxy-[26,27-(3)H]vitamin D(3) was also detected at low levels in plasma, kidneys, and liver of some but not all mutant mice. The presence of 25-hydroxyvitamin D(3)-24-hydroxylase mRNA in the kidneys of these vitamin D receptor null mutant mice was confirmed by ribonuclease protection assay.  相似文献   

7.
The 26-hydroxylation of 1alpha,25-dihydroxyvitamin D3 in rats in vitro and in vivo was studied under physiological conditions. Incubation of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 with rat kidney or rat liver homogenate showed formation of a metabolite that was identified as 1alpha,25(S),26-trihydroxy-[26,27-3H]vitamin D3 by comigration on three different HPLC systems and a periodate cleavage reaction. This metabolite was not generated by hydroxylation of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 itself but by an enzymatic conversion of a precursor that was formed nonenzymatically in substantial amounts upon storage of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 in ethanol at -20 degrees C under argon for more than three weeks. An in vivo metabolism study in rats dosed with a physiological dose of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 confirmed the absence of 26-hydroxylation of the hormone. As expected at 6 h postinjection of purified 1alpha,25-dihydroxy-[26,27-3H]vitamin D3, 1alpha,24(R),25-trihydroxy-[26,27-3H]vitamin D3, as well as traces of (23S,25R)-1alpha,25-dihydroxy-[3H]vitamin D3-lactone were detected and identified on straight phase and reverse phase HPLC in serum, kidney, and liver.  相似文献   

8.
Preparation of high-specific-activity D-[3-3H]pantothenic acid   总被引:1,自引:0,他引:1  
High-specific-activity D-[3-3H]pantothenic acid (5 Ci/mmol) was prepared from commercially available beta-[3-3H]alanine employing Escherichia coli strain DV1 (panD2 pan F1). This strain is defective in beta-alanine synthesis and pantothenate uptake, and under appropriate growth conditions converted 85 to 90% of the input beta-[3-3H]alanine to extracellular D-[3-3H]pantothenate. The radiolabeled vitamin was purified from the medium by thin-layer chromatography followed by reverse-phase high-performance liquid chromatography. The overall yield of D-[3-3H]pantothenic acid was 30% and radiochemical purity was greater than 99%.  相似文献   

9.
Vitamin D-deficient laying hens were repleted with 25-hydroxy[26,27-3H]vitamin D3 or 1,25-dihydroxy[26,27-3H]vitamin D3. Egg production returned to normal for both groups of hens by the third week. Eggs from hens fed either 25-hydroxy[26,27-3H]vitamin D3 or 1,25-dihydroxy[26,27-3H]vitamin D3 contained 1,25-dihydroxy[26,27-3H]vitamin D3. Eggs from hens fed 25-hydroxy[26,27-3H]vitamin D3 contained substantial amounts of 25-hydroxy[26,27-3H]vitamin D3, while those from hens fed 1,25-dihydroxy[26,27-3H]vitamin D3 contained none. Plasma from 18-day embryos from hens fed 1,25-dihydroxy[26,27-3H]vitamin D3 contained little or no 1,25-dihydroxy[26,27-3H]vitamin D3, while that from 18-day embryos from hens given 25-hydroxy[26,27-3H]vitamin D3 had normal levels of 1,25-dihydroxy[26,27-3H]vitamin D3. No eggs from hens fed 1,25-dihydroxy[26,27-3H]vitamin D3 hatched, while eggs from hens fed 25-hydroxy[26,27-3H]vitamin D3 achieved a hatchability of 90%. It appears that embryos from hens maintained on 1,25-dihydroxyvitamin D3 as their sole source of vitamin D are essentially vitamin D deficient.  相似文献   

10.
1alpha-Hydroxy [6-3H]vitamin D3 has been synthesized with a specific activity of 4 Ci/mmol, and its metabolism in rats has been studied. It is rapidly converted to 1alpha,25-dihydroxy [6-3H]vitamin D3 in vivo. Following an intravenous or oral dose, a maximal concentration of 1alpha,25-dihydroxy [6-3H]vitamin D3 is found 2 and 4 hours, respectively, before the maximal intestinal calcium transport response is observed. Similarly, 1alpha,25-dihydroxy[6-3H]vitamin D3 accumulation in bone precedes the bone calcium mobilization response. It appears, therefore, that the biological activity of 1alpha-hydroxyvitamin D3 is largely, if not exclusively, due to its conversion to 1alpha,25-dihydroxy[6-3H]vitamin D3 1alpha-Hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appear in intestine equally well after an oral or an intravenous dose of 1alpha-hydroxy[6-3H]vitamin D3. However, much less of both 1alpha-hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appears in bone and blood after an oral than after an intravenous dose. A much reduced bone calcium mobilization response is also noted following an oral dose as compared to an intravenous dose of 1alpha-hydroxyvitamin D3, suggesting that oral 1alpha-hydroxyvitamin D3 is not utilized as well as intravenously administered material.  相似文献   

11.
The binding of 25-hydroxy-[26,27-3H]vitamin D-3 and 25-hydroxy-[26,27-3H]vitamin D-2 to the vitamin D binding protein in the plasma of both rats and chicks has been studied. In the case of rats, sucrose density gradient analysis, competitive displacement, and Scatchard analysis demonstrate that 25-hydroxyvitamin D-3 and 25-hydroxyvitamin D-2 are bound equally well to the vitamin D binding protein. In contrast, 25-hydroxyvitamin D-2 is poorly bound, while 25-hydroxyvitamin D-3 is tightly bound to the vitamin D binding protein in chick plasma. On the other hand, the chick intestinal receptor binds 1,25-dihydroxyvitamin D-2 and 1,25-dihydroxyvitamin D-3 equally well with a KD of 7.10(-11) M for both compounds. These results strongly suggest that the failure of the plasma transport protein in chicks to bind the vitamin D-2 compounds may be responsible for their relative ineffectiveness in these animals.  相似文献   

12.
A rapid method for the measurement of the 24-hydroxylated metabolites of 25-hydroxy[26,27-3H]vitamin D3 and 1,25-dihydroxy[26,27-3H]vitamin D3 has been developed. This measurement has, in turn, made possible a rapid assay for the 24-hydroxylases of the vitamin D system. The assay involves the use of 26,27-3H-labeled 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 as the substrate and treatment of the enzyme reaction mixture with sodium periodate, which specifically cleaves the 24-hydroxylated products between carbons 24 and 25, releasing tritiated acetone. The acetone is measured after its separation from the labeled substrate by using a reversed-phase cartridge. The results obtained with this assay were validated by comparison with the results obtained with a well-established high-performance liquid chromatography assay. The activity of the enzyme determined by both methods was equal. This assay has been successfully used for the rapid screening of column fractions during purification of the enzyme and in the screening for monoclonal antibodies to the 24-hydroxylase.  相似文献   

13.
R Kumar  D Harnden  H F DeLuca 《Biochemistry》1976,15(11):2420-2423
Approximately 7% of a 650-pmol dose of 25-hydroxyl[26,27-14C]vitamin D3 and 25% of a 325-pmol dose of 1,25-dihydroxyl[26,27-14C]vitamin D3 are metabolized to 14CO2 by vitamin D deficient rats. Nephrectomy prevents the metabolism of 25-hydroxy[26,27-14C]vitamin D3 to 14CO2 but not that of 1,25-dihydroxy[26,27-14C]vitamin D3. Less than 5% of the 14C from 24,25-dihydroxy[26,27-14C]vitamin D3 is metabolized to 14CO2. Feeding diets high in calcium and supplemented with vitamin D3 markedly diminishes the amount of 14CO2 formed from 25-hydroxy[26,27-14C]vitamin D3 but not that from 1,25-dihydroxyl[26,27-14C]vitamin D3. These results provide strong evidence that only 1-hydroxylated vitamin D compounds and especially 1,25-dihydroxyvitamin D3 undergo side-chain oxidation and cleavage to yield an unknown metabolite and CO2.  相似文献   

14.
24R,24,25-Dihydroxyvitamin D3 is capable of inducing a minimal intestinal calcium transport response in chicks when compared to an equal amount of 25-hydroxyvitamin D3. 1,24,25-Trihydroxyvitamin D3 is also less active than 1,25-dihydroxyvitamin D3, and its activity is much shorter lived than that of 1,25-dihydroxyvitamin D3. A comparison of the metabolism of 25-hydroxy[26,27-3H]vitamin D3 and 24,25-dihydroxy[26,27-3H]vitamin D3 in the rat and chick shows that 24,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3 disappear at least 10 times more rapidly from the blood and intestine of chicks. Furthermore, examination of the excretory products from both of these species demonstrates that chicks receiving a single dose of 24,25-dihydroxy[26,27-3H]vitamin D3 excrete 66% of the total radioactivity by 48 hours, whereas rats receiving the same dose excrete less than one-half that amount. These results demonstrate that 24,25-dihydroxyvitamin D3 is considerably less biologically active in the chick than in the rat, probably due to more rapid metabolism and excretion.  相似文献   

15.
Underivatized 1,25-dihydroxy[26,27-3H]vitamin D-3 was successfully used to photoaffinity label the 1,25-dihydroxyvitamin D-3 receptor. The covalent incorporation of tritium into the receptor protein was induced by ultraviolet irradiation of the receptor-1,25-dihydroxy[26,27-3H]vitamin D-3 complex in crude pig intestinal nuclear extract. The amount of incorporated label increased with increasing time of irradiation and was dependent on light of wavelengths 220-280 nm. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography were used to demonstrate that label was incorporated primarily into the 1,25-dihydroxyvitamin D-3 receptor. In addition, the label incorporation was eliminated by competition with a 100-fold excess nonradioactive 1,25-dihydroxyvitamin D-3, indicating that the label was specific for the steroid binding site. Since 1,25-(OH)2[26,27-3H]vitamin D-3 is readily available and requires no special precautions for its preparation and handling, it should be a useful photoaffinity label for future studies of the receptor.  相似文献   

16.
Synthesis of 25-hydroxy[23,24-3H]vitamin D3   总被引:3,自引:0,他引:3  
A synthesis of 25-hydroxy[23,24-3H]vitamin D3 leading to a radiochemically pure product with a specific acitivity of 78 Ci/mmol is described. The structure of the product was confirmed by comparison with unlabeled material and its biological activity was established by in vitro conversion to 1α,25-dihydroxy[23,24-3H]vitamin D3 using the chick kidney 1α-hydroxylase system.  相似文献   

17.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway is initiated by hydroxylation at C-24 of the side chain and leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways are initiated by hydroxylations at C-23 and C-26 of the side chain and lead to the formation of the end product, calcitriol lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 of the A-ring to form 1alpha,25(OH)(2)-3-epi-D(3). A rational design for the synthesis of potent analogs of 1alpha,25(OH)(2)D(3) is developed based on the knowledge of the various metabolic pathways of 1alpha,25(OH)(2)D(3). Structural modifications around the C-20 position, such as C-20 epimerization or introduction of the 16-double bond affect the configuration of the side chain. This results in the arrest of the C-24 hydroxylation initiated cascade of side chain modifications at the C-24 oxo stage, thus producing the stable C-24 oxo metabolites which are as active as their parent analogs. To prevent C-23 and C-24 hydroxylations, cis or trans double bonds, or a triple bond are incorporated in between C-23 and C-24. To prevent C-26 hydroxylation, the hydrogens on these carbons are replaced with fluorines. Furthermore, testing the metabolic fate of the various analogs with modifications of the A-ring, it was found that the rate of C-3 epimerization of 5,6-trans or 19-nor analogs is decreased to a significant extent. Assembly of all these protective structural modifications in single molecules has then produced the most active vitamin D(3) analogs 1alpha,25(OH)(2)-16,23-E-diene-26,27-hexafluoro-19-nor-D(3) (Ro 25-9022), 1alpha,25(OH)(2)-16,23-Z-diene-26,27-hexafluoro-19-nor-D(3) (Ro 26-2198), and 1alpha,25(OH)(2)-16-ene-23-yne-26,27-hexafluoro-19-nor-D(3) (Ro 25-6760), as indicated by their antiproliferative activities.  相似文献   

18.
We synthesized 25-hydroxy-26,27-dimethylvitamin D3, 9, and 1,25-dihydroxy-26,27-dimethylvitamin D3, 14, from chol-5-enic acid-3 beta-ol and tested their biological activity in vivo and in vitro. 9 was found to be highly potent vitamin D analog with bioactivity similar to that of 25-hydroxyvitamin D3. 9 bound to rat plasma vitamin D binding protein with approximately one-third the affinity of 25-hydroxyvitamin D3. In a duodenal organ culture system and in a competitive binding assay with chick intestinal 1,25-dihydroxyvitamin D receptor, 9 was significantly more potent than 25-hydroxyvitamin D3. 1,25-Dihydroxy-26,27-dimethylvitamin D3, 14 was also highly active in vivo. At doses of 1000-5000 pmol/rat, its action was more sustained than that of 1,25-dihydroxyvitamin D3. 14 bound to vitamin D binding protein about 18 times less effectively than 1,25-dihydroxyvitamin D3. 14 bound to the chick intestinal cytosol receptor with an affinity one-half that of 1,25-dihydroxyvitamin D3. In a duodenal organ culture system, 14 was about half as active as 1,25-dihydroxyvitamin D3. Extension of the sterol side chain, at C-26 and C-27, by methylene groups, prolongs the bioactivity of a vitamin D sterol hydroxylated at C-1 and C-25; the corresponding sterol, hydroxylated only at C-25, does not show any alteration of its bioactivity in vivo. These newly synthesized analogs may potentially be of therapeutic use in various mineral disorders.  相似文献   

19.
We describe herein two different effects of protease inhibitors and substrates on receptors for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) obtained from the intestinal mucosa of vitamin D-deficient chicks: inhibition of binding of 1,25(OH)2D3 to its receptor and stabilization of the receptor. Both L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK), a chymotrypsin inhibitor, and N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), a trypsin inhibitor, block [3H]1,25(OH)2D3 binding to the receptor. Fifty per cent inhibition of binding occurs at 20 microM TPCK, and 100% inhibition at 100-200 microM; TLCK is about 25-fold less effective. At higher concentrations (10-100 mM), the chymotrypsin substrates N alpha-p-tosyl-L-arginine methyl ester and tryptophan methyl ester and the cathepsin B inhibitor leupeptin also inhibit [3H] 1,25(OH)2D3 binding to its receptor. Different inhibitors and substrates interact with the receptor differently: TPCK (20 microM) and N alpha-p-tosyl-L-arginine methyl ester (10 mM) are reversible, noncompetitive inhibitors, L-tryptophan methyl ester (20 mM) is a reversible competitive inhibitor, and phenylmethylsulfonyl fluoride (300 microM) shows no effect on [3H]1,25(OH)2D3 binding to its receptor. The most stable form of unoccupied 1,25(OH)2D3 receptors from chick intestinal mucosa was that obtained from a low salt chromatin preparation (t 1/2 = 6.0 h). The presence of KCl drastically decreased receptor stability (t 1/2 = 1.8 h); and the addition of 2.5 mM CaCl2 further reduced their stability. Phenylmethylsulfonyl fluoride and Trasylol inhibited the KCl-induced receptor instability, but did not prevent the additional instability in the presence of CaCl2. In summary, TPCK and TLCK exert direct effects on the 1,25(OH)2D3 receptor molecule, independent of their protease inhibitor function. These compounds may prove useful as covalent affinity labels for the receptor. On the other hand, phenylmethylsulfonyl fluoride and Trasylol stabilize 1,25(OH)2D3 receptors, probably via inhibition of KCl-activated nuclear protease(s). This receptor stabilization will be advantageous in receptor assays and/or purification procedures.  相似文献   

20.
Monocytic differentiation-inducing activity of 26,26,26,27,27,27-hexafluoro-1 alpha,25-dihydroxyvitamin D3 [26,27-F6-1 alpha,25-(OH)2D3] was re-evaluated in human promyelocytic leukemia (HL-60) cells in serum-supplemented or serum-free culture. The order of in vitro potency for reducing nitroblue tetrazolium (NBT) was 26,27-F6-1 alpha,25-(OH)2D3 greater than 1 alpha, 25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] = 26,26,26,27,27,27-F6-1 alpha,23(S), 25-trihydroxyvitamin D3 [26,27-F6-1 alpha,23(S), 25-(OH)3D3] under serum-supplemented culture conditions, whereas the order was 1 alpha, 25-(OH)2D3 = 26,27-F6-1 alpha,25-(OH)2D3 greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 under serum-free culture conditions. This rank order for differentiation-inducing activity under serum-free culture conditions correlated well with the binding affinity of these analogs for vitamin D3 receptor of HL-60 cells. The order of relative % binding affinity for the vitamin D-binding protein in fetal calf serum was 1 alpha,25-(OH)2D3 (100%) much greater than 26,27-F6-1 alpha,25-(OH)2D3 (5.1%) greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 (less than 1%). These results suggest that serum vitamin D-binding proteins apparently modulate monocytic differentiation of HL-60 cells by 26,27-F6-1 alpha,25-(OH)2D3 under serum-supplemented culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号