首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin (CaM) is a Ca(2+)-binding protein that functions as a ubiquitous Ca(2+)-signaling molecule, through conformational changes from the "closed" apo conformation to the "open" Ca(2+)-bound conformation. Mg(2+) also binds to CaM and stabilizes its folded structure, but the NMR signals are broadened by slow conformational fluctuations. Using the E104D/E140D mutant, designed to decrease the signal broadening in the presence of Mg(2+) with minimal perturbations of the overall structure, the solution structure of the Mg(2+)-bound form of the CaM C-terminal domain was determined by multidimensional NMR spectroscopy. The Mg(2+)-induced conformational change mainly occurred in EF hand IV, while EF-hand III retained the apo structure. The helix G and helix H sides of the binding sequence undergo conformational changes needed for the Mg(2+) coordination, and thus the helices tilt slightly. The aromatic rings on helix H move to form a new cluster of aromatic rings in the hydrophobic core. Although helix G tilts slightly to the open orientation, the closed conformation is maintained. The fact that the Mg(2+)-induced conformational changes in EF-hand IV and the hydrophobic core are also seen upon Ca(2+) binding suggests that the Ca(2+)-induced conformational changes can be divided into two categories, those specific to Ca(2+) and those common to Ca(2+) and Mg(2+).  相似文献   

2.
NMR was used to study the solution structure of bovine tRNA(Trp) hyperexpressed in Escherichia coli. With the use of (15)N labeling and site-directed mutagenesis to assign overlapping resonances through the base pair replacement of U(71)A(2) by G(2)C(71), U(27)A(43) by G(27)C(43), and G(12)C(23) by U(12)A(23), the resonances of all 26 observable imino protons in the helical regions and in the tertiary interactions were assigned unambiguously by means of two-dimensional nuclear Overhauser effect spectroscopy and heteronuclear single quantum coherence methods. When the discriminator base A(73) and the G(12)C(23) base pair on the D stem, two identity elements on bovine tRNA(Trp) that are important for effective recognition by tryptophanyl-tRNA synthetase, were mutated to the ineffective forms of G(73) and U(12)A(23), respectively, NMR analysis revealed an important conformational change in the U(12)A(23) mutant but not in the G(73) mutant molecule. Thus A(73) appears to be directly recognized by tryptophanyl-tRNA synthetase, and G(12)C(23) represents an important structural determinant. Mg(2+) effects on the assigned resonances of imino protons allowed the identification of strong, medium, and weak Mg(2+) binding sites in tRNA(Trp). Strong Mg(2+) binding modes were associated with the residues G(7), s(4)U(8) (where s(4)U is 4-thiouridine), G(12), and U(52). The observations that G(42) was associated with strong Mg(2+) binding in only the U(12)A(23) mutant tRNA(Trp) but not the wild type or G(73) mutant tRNA(Trp) and that the G(7), s(4)U(8), G(24), and G(22) imino protons are associated with a two-site Mg(2+) binding mode in wild type and G(73) mutant but only a one-site mode in the U(12)A(23) mutant established the occurrence of conformational change in the U(12)A(23) mutant tRNA(Trp). These observations also established the dependence of Mg(2+) binding on tRNA conformation and the usefulness of Mg(2+) binding sites as conformational probes. The thermal titration of tRNA(Trp) in the presence and absence of 10 mm Mg(2+) indicated that overall tRNA(Trp) structure stability was increased by more than 15 degrees C by the presence of Mg(2+).  相似文献   

3.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

4.
Rueda D  Wick K  McDowell SE  Walter NG 《Biochemistry》2003,42(33):9924-9936
The hammerhead ribozyme is one of the best-studied small RNA enzymes, yet is mechanistically still poorly understood. We measured the Mg(2+) dependencies of folding and catalysis for two distinct hammerhead ribozymes, HHL and HH alpha. HHL has three long helical stems and was previously used to characterize Mg(2+)-induced folding. HH alpha has shorter stems and an A.U tandem next to the cleavage site that increases activity approximately 10-fold at 10 mM Mg(2+). We find that both ribozymes cleave with fast rates (5-10 min(-1), at pH 8 and 25 degrees C) at nonphysiologically high Mg(2+) concentrations, but with distinct Mg(2+) dissociation constants for catalysis: 90 mM for HHL and 10 mM for HH alpha. Using time-resolved fluorescence resonance energy transfer, we measured the stem I-stem II distance distribution as a function of Mg(2+) concentration, in the presence and absence of 100 mM Na(+), at 4 and 25 degrees C. Our data show two structural transitions. The larger transition (with Mg(2+) dissociation constants in the physiological range of approximately 1 mM, below the catalytic dissociation constants) brings stems I and II close together and is hindered by Na(+). The second, globally minor, rearrangement coincides with catalytic activation and is not hindered by Na(+). Additionally, the more active HH alpha exhibits a higher flexibility than HHL under all conditions. Finally, both ribozyme-product complexes have a bimodal stem I-stem II distance distribution, suggesting a fast equilibrium between distinct conformers. We propose that the role of diffusely bound Mg(2+) is to increase the probability of formation of a properly aligned catalytic core, thus compensating for the absence of naturally occurring kissing-loop interactions.  相似文献   

5.
The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-activation voltage (V(0.5)) is steeply dependent on [Ca(2+)] in the micromolar range, but shows a tendency towards saturation over the range of 60-300 microM Ca(2+). As [Ca(2+)] is increased to millimolar levels, the V(0.5) is strongly shifted again to more negative potentials. When channels are activated by 300 microM Ca(2+), further addition of either mM Ca(2+) or mM Mg(2+) produces similar negative shifts in steady-state activation. Millimolar Mg(2+) also produces shifts of similar magnitude in the complete absence of Ca(2+). The ability of millimolar concentrations of divalent cations to shift activation is primarily correlated with a slowing of BK current deactivation. At voltages where millimolar elevations in [Ca(2+)] increase activation rates, addition of 10 mM Mg(2+) to 0 Ca(2+) produces little effect on activation time course, while markedly slowing deactivation. This suggests that Mg(2+) does not participate in Ca(2+)-dependent steps that influence current activation rate. We conclude that millimolar Mg(2+) and Ca(2+) concentrations interact with low affinity, relatively nonselective divalent cation binding sites that are distinct from higher affinity, Ca(2+)-selective binding sites that increase current activation rates. A symmetrical model with four independent higher affinity Ca(2+) binding steps, four voltage sensors, and four independent lower affinity Ca(2+)/Mg(2+) binding steps describes well the behavior of G-V curves over a range of Ca(2+) and Mg(2+). The ability of a broad range of [Ca(2+)] to produce shifts in activation of Slo1 conductance can, therefore, be accounted for by multiple types of divalent cation binding sites.  相似文献   

6.
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.  相似文献   

7.
Under standard conditions (Mg2+/150 mM NH4+) ribosomes can quantitatively participate in tRNA binding at Mg2+ concentrations of 12 to 15 mM. The overall poly(U)-directed Phe incorporation and the extent of tRNA binding to either P, E or A sites decrease in a parallel manner when the Mg2+ concentration is lowered below 10 mM. At 4 mM the inactivation amounts to about 80%. The coordinate inactivation of all three binding sites is accompanied by an increasing impairment of the ability to translocate A-site bound AcPhe-tRNA to the P site. The translocation efficiency is already reduced at 10 mM Mg2+, and is completely blocked at 6-8 mM. The severe inactivation seen at 6 mM Mg2+ vanishes when the polyamines spermine (0.6 mM) and spermidine (0.4 mM) are present in the assay; tRNA binding again becomes quantitative, the total Phe synthesis even exceeds that observed in the absence of polyamines by a factor of 4. In the presence of polyamines and low Mg2+ (3 and 6 mM) two essential features of the allosteric three-site model (Rheinberger and Nierhaus, J. Biol. Chem. 261, 9133 (1986] are demonstrated. 1) Deacylated tRNA is not released from the P site, but moves to the E site during the course of translocation. 2) Occupation of the E site reduces the A site affinity and vice versa (allosteric interactions between E and A sites). The quality of an in vitro system for protein synthesis can be assessed by two criteria. First, the incubation conditions must allow a near quantitative tRNA binding. Secondly, protein synthesis should proceed with near in vivo rate and accuracy. The 3 mM Mg2+/NH4+/polyamine-system seems to be the best compromise at present between these two requirements.  相似文献   

8.
Shelton VM  Sosnick TR  Pan T 《Biochemistry》2001,40(12):3629-3638
The isothermal equilibrium folding of the unmodified yeast tRNA(Phe) is studied as a function of Na(+), Mg(2+), and urea concentration with hydroxyl radical protection, circular dichroism, and diethyl pyrocarbonate (DEPC) modification. These assays indicate that this tRNA folds in Na(+) alone. Similar to folding in Mg(2+), folding in Na(+) can be described by two transitions, unfolded-to-intermediate-to-native. The I-to-N transition has a Na(+) midpoint of approximately 0.5 M and a Hill constant of approximately 4. Unexpectedly, the urea m-value, the dependence of free energy on urea concentration, for the I-to-N transition is significantly smaller in Na(+) than in Mg(2+), 0.4 versus 1.7 kcal mol(-1) M(-1), indicating that more structure is formed in the Mg(2+)-induced transition. DEPC modification indicates that the I state in Na(+)-induced folding contains all four helices of tRNA and the I-to-N transition primarily corresponds to the formation of the tertiary structure. In contrast, the intermediate in Mg(2+)-induced folding contains only three helices, and the I-to-N transition corresponds to the formation of the acceptor stem plus tertiary structure. The cation dependence of the intermediates arises from the differences in the stability of the acceptor stem and the tertiary structure. The acceptor stem is stable at a lower Na(+) concentration than required for the tertiary structure formation. The relative stability is reversed in Mg(2+) so that the acceptor stem and the tertiary structure form simultaneously in the I-to-N transition. These results demonstrate that formation of the RNA secondary structure can be independent or coupled to the formation of the tertiary structure depending on their relative stability in monovalent and divalent ions.  相似文献   

9.
Ca2+ binding to rabbit skeletal calsequestrin was studied at physiological ionic strength by equilibrium flow dialysis, Hummel-Dryer gel filtration and microcalorimetry. 31 Ca(2+)-binding sites with a mean dissociation constant (KD) of 0.79 mM were titrated in the absence, and 23 sites with a KD of 0.88 mM in the presence of 3 mM Mg2+. No cooperativity was observed. For Mg2+ binding, the combination of gel filtration and microcalorimetry yielded a stoichiometry of 26 Mg2+/protein with a KD of 2mM. 1 mM Ca2+ decreased the stoichiometry to 20 Mg2+/protein. Binding of Ca2+ in the absence and presence of 3 mM Mg2+ was accompanied by a release of 2.0 and 2.7 H+/protein, respectively. Mg2+ binding did not lead to a significant proton release suggesting a qualitative difference in the Ca(2+)- and Mg(2+)-binding sites. After correction for proton release, the enthalpy change for Ca2+ binding was very low (-1.5 kJ/protein in the absence, and -15 kJ/protein in the presence of 3 mM Mg2+). The entropy change (+59 J/K.site in the absence and +56 J/K.site in the presence of Mg2+) was therefore virtually the sole driving force for Ca2+ binding. Mg2+ binding is slightly more exothermic (-12.6 kJ/protein), but as for Ca2+, the entropy change (+50 J/K.site) constituted the major driving force of the reaction. A fluorimetric study indicates that the conformation of tryptophan in Mg(2+)-saturated calsequestrin was clearly different from that in the Ca(2+)-saturated protein, but that the (Ca2+ + Mg2+)-saturated protein was not distinct from the Ca(2+)-saturated protein. Thus, in addition to the thermodynamic characterization of the Ca2+/calsequestrin interaction, our data indicate that Ca2+ and Mg2+ do not bind to the same sites on calsequestrin. The data also predict considerable proton fluxes upon Ca(2+)-Mg2+ exchange in vivo.  相似文献   

10.
In the present work, we studied the interactions of recombinant alpha1 and alpha2 integrin I domains with cations Tb(3+), Mn(2+), Mg(2+) and Ca(2+). We observed that alpha1 and alpha2 I domains bind these cations with significantly different characteristics. The binding of Mg(2+) by the alpha1 I domain was accompanied by significant changes of tryptophan fluorescence which could be interpreted as a conformational change. Comparison of the alpha1 integrin I domain structure obtained by comparative modeling with a known structure of the alpha2 integrin I domain shows distinct differences in the metal ion binding sites which could explain the differences in cation binding.  相似文献   

11.
The latency of Micrococcus lysodeikticus membrane-bound Mg(2+)-adenosine triphosphatase (ATPase) is expressed by the ratio of its activity assayed in the presence of trypsin ("total") versus the activity assayed in absence of the protease ("basal"). By isolating membranes in the presence of variable concentrations of Mg(2+) (50 mM, 10 mM, or none) and by washing them with different Mg(2+)- and ethylenediaminetetraacetic acid-containing tris(hydroxymethyl)aminomethane-hydrochloride buffers (pH 7.5), we showed that the enzyme latency was dependent on the environmental concentration of this divalent metal ion. Mg(2+) bound to at least two classes of sites. The binding of Mg(2+) to low-affinity sites (saturation at approximately 40 mM external Mg(2+)) induced a high basal ATPase activity, whereas its binding to medium-affinity sites (saturation at about 2 mM Mg(2+)) correlated with low basal activity and a very high stimulation by trypsin. Membranes with tightly bound Mg(2+) (high affinity?) revealed an intermediate behavior for the latency of M. lysodeikticus ATPase. The Mg(2+)/Ca(2+) antagonism as activators of the membrane ATPase was not directly related to Mg(2+) binding by the membranes. The efficiency of the ATPase release from M. lysodeikticus membrane by 3 mM tris(hydroxymethyl)aminomethane-hydrochloride buffer (pH 7.5) was inversely proportional to the concentration of external and/or bound Mg(2+). Deoxycholate (DOC) (1%) solubilized the ATPase from all types of membrane. All the soluble ATPases behaved as Ca(2+)-ATPases, but the DOC-soluble fractions showed degrees of latency like those of the original membranes. The DOC-soluble ATPase preparation revealed a vesicular structure and complex protein patterns by sodium dodecyl sulfate gel electrophoresis. We propose that ATPase latency is modulated via a Mg(2+)-ATPase-membrane complex.  相似文献   

12.
M Plohl  Z Ku?an 《Biochimie》1988,70(5):637-644
Stimulatory effects of Mg2+ and spermine on the kinetics of the aminoacylation of tRNA(Tyr) were examined using purified yeast tRNA(Tyr) and tyrosyl-tRNA synthetase. The apparent Km for tRNA(Tyr) was the lowest at Mg2+ concentrations between 2 and 5 mM and was not influenced by spermine. In the absence of spermine, the apparent Vmax was the highest at Mg2+ concentrations of 5 mM or higher, whereas the presence of spermine strongly stimulated the reaction at lower Mg2+ concentrations. Spermine alone could not substitute for Mg2+, nor was it able, at any Mg2+ concentration, to increase the reaction rate above the level reached at high concentrations of Mg2+ alone. Calculations of the concentration of Mg3.tRNA(Tyr) complex as a function of initial Mg2+ concentration, using the binding constants derived from physical measurements, allow the conclusion that spermine exerts its stimulatory activity by creating strong binding sites for Mg2+; this would enable the tRNA to assume the conformation required for optimal aminoacylation. The conformational requirement for the first tRNA: synthetase encounter is obviously less stringent, since the apparent Km for tRNA(Tyr) is not influenced by spermine.  相似文献   

13.
Neuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein, plays an important role in the modulation of neurotransmitter release and phosphatidylinositol signaling pathway. It is known that the physiological activity of NCS-1 is governed by its myristoylation. Here, we present the role of myristoylation of NSC-1 in governing Ca(2+) binding and Ca(2+)-induced conformational changes in NCS-1 as compared with the role in the nonmyristoylated protein. The (45)Ca binding and isothermal titration calorimetric data show that myristoylation increases the degree of cooperativity; thus, the myristoylated NCS-1 binds Ca(2+) more strongly (with three Ca(2+) binding sites) than the non-myristoylated one (with two Ca(2+) binding sites). Both forms of protein show different conformational features in far-UV CD when titrated with Ca(2+). Large conformational changes were seen in the near-UV CD with more changes in the case of nonmyristoylated protein than the myristoylated one. Although the changes in the far-UV CD upon Ca(2+) binding were not seen in E120Q mutant (disabling EF-hand 3), the near-UV CD changes in conformation also were not influenced by this mutation. The difference in the binding affinity of myristoylated and non-myristoylated proteins to Ca(2+) also was reflected by Trp fluorescence. Collisional quenching by iodide showed more inaccessibility of the fluorophore in the myristoylated protein. Mg(2+)-induced changes in near-UV CD are different from Ca(2+)-induced changes, indicating ion selectivity. 8-Anilino-1-naphthalene sulfonic acid binding data showed solvation of the myristoyl group in the presence of Ca(2+), which could be attributed to the myristoyl-dependent conformational changes in NCS-1. These results suggest that myristoylation influences the protein conformation and Ca(2+) binding, which might be crucial for its physiological functions.  相似文献   

14.
Fedosova NU  Champeil P  Esmann M 《Biochemistry》2003,42(12):3536-3543
Transient kinetic analysis of nucleotide binding to pig kidney Na,K-ATPase using a rapid filtration technique shows that the interaction between nucleotide and enzyme apparently follows simple first-order kinetics both for ATP in the absence of Mg(2+) and for ADP in the presence or absence of Mg(2+). Rapid filtration experiments with Na,K-ATPase membrane sheets may nevertheless suffer from a problem of accessibility for a fraction of the ATPase binding sites. Accordingly, we estimate from these data that for ATP binding in the absence of Mg(2+) and the presence of 35 mM Na(+) at pH 7.0 at 20 degrees C, the bimolecular binding rate constant k(on) is about 30 microM(-1) x s(-1) and the dissociation rate constant k(off) is about 8 s(-1). In the presence of 10 mM Mg(2+), the binding rate constant is the same as that in the absence of Mg(2+). For ADP or MgADP the binding rate constant is about 20 microM(-1) x s(-1) and the dissociation rate constant is about 12 s(-1). Results of rapid-mixing stopped-flow experiments with the fluorescent dye eosin are also consistent with a one-step mechanism of binding of eosin to the ATPase nucleotide site. The implication of these results is that nucleotide binding to Na,K-ATPase both in the absence and presence of Mg(2+) appears to be a single-step event, at least on the time scale accessible in these experiments.  相似文献   

15.
Eosin has been used as a fluorescent probe for studying conformational states in (K+ + H+)-ATPase. The eosin fluorescence level is increased by Mg2+ (K0.5 = 0.2 mM). This increase is counteracted by K+ (I0.5 = 1.3 mM) and choline (I0.5 = 17.2 mM) and by ATP. Binding studies with eosin indicate that the increase and decrease in fluorescence is due to changes in binding of eosin to the enzyme. The Mg2+-induced specific binding has a Kd of 0.7 microM and a maximal capacity of 3.5 nmol per mg enzyme, which is equivalent to 2.5 site per phosphorylation site. These experiments and the fact that eosin competitively inhibits (K+ + H+)-ATPase towards ATP, suggest that eosin binds to ATP binding sites.  相似文献   

16.
17.
V Dao  R H Guenther  P F Agris 《Biochemistry》1992,31(45):11012-11019
The tDNA(Phe)AC, d(CCAGACTGAAGAU13m5C14U15GG), with a DNA sequence similar to that of the anticodon stem and loop of yeast tRNA(Phe), forms a stem and loop structure and has an Mg(2+)-induced structural transition that was not exhibited by an unmodified tDNA(Phe)AC d(T13C14T15) [Guenther, R. H., Hardin, C. C., Sierzputowska-Gracz, H., Dao, V., & Agris, P. F. (1992) Biochemistry (preceding paper in this issue)]. Three tDNA(Phe)AC molecules having m5C14, tDNA(Phe)AC d(U13m5C14U15), d(U13m5C14T15), and d(T13,5C14U15), also exhibited Mg(2+)-induced structural transitions and biphasic thermal transitions (Tm approximately 23.5 and 52 degrees C), as monitored by CD and UV spectroscopy. Three other tDNA(Phe)AC, d(T13C14T15), d(U13C14U15), and d(A7;U13m5C14U15) in which T7 was replaced with an A, thereby negating the T7.A10 base pair across the anticodon loop, had no Mg(2+)-induced structural transitions and only monophasic thermal transitions (Tm of approximately 52 degrees C). The tDNA(Phe)AC d(U13m5C14U15) had a single, strong Mg2+ binding site with a Kd of 1.09 x 10(-6) M and a delta G of -7.75 kcal/mol associated with the Mg(2+)-induced structural transition. In thermal denaturation of tDNA(Phe)AC d(U13m5C14U15), the 1H NMR signal assigned to the imino proton of the A5.dU13 base pair at the bottom of the anticodon stem could no longer be detected at a temperature corresponding to that of the loss of the Mg(2+)-induced conformation from the CD spectrum. Therefore, we place the magnesium in the upper part of the tDNA hairpin loop near the A5.dU13 base pair, a location similar to that in the X-ray crystal structure of native, yeast tRNA(Phe).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have re-determined the crystal structure of yeast tRNA(Phe) to 2. 0 A resolution using 15 year old crystals. The accuracy of the new structure, due both to higher resolution data and formerly unavailable refinement methods, consolidates the previous structural information, but also reveals novel details. In particular, the water structure around the tightly bound Mg(2+) is now clearly resolved, and hence provides more accurate information on the geometry of the magnesium-binding sites and the role of water molecules in coordinating the metal ions to the tRNA. We have assigned a total of ten magnesium ions and identified a partly conserved geometry for high-affinity Mg(2+ )binding. In the electron density map there is also clear density for a spermine molecule binding in the major groove of the TPsiC arm and also contacting a symmetry-related tRNA molecule. Interestingly, we have also found that two specific regions of the tRNA in the crystals are partially cleaved. The sites of hydrolysis are within the D and anticodon loops in the vicinity of Mg(2+).  相似文献   

19.
We report here a combination of site-directed mutations that eliminate the high-affinity Ca(2+) response of the large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), leaving only a low-affinity response blocked by high concentrations of Mg(2+). Mutations at two sites are required, the "Ca(2+) bowl," which has been implicated previously in Ca(2+) binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BK(Ca) channel contains three types of Ca(2+) binding sites, one of low affinity that is Mg(2+) sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca(2+) to influence channel opening. Estimates of the binding characteristics of the BK(Ca) channel's high-affinity Ca(2+)-binding sites are provided.  相似文献   

20.
Calbindin D28k exhibits properties characteristic of a Ca2+ sensor   总被引:3,自引:0,他引:3  
Calbindin D(28k) is a member of the calmodulin superfamily of Ca(2+)-binding proteins and contains six EF-hands. The protein is generally believed to function as a Ca(2+) buffer, but the studies presented in this work indicate that it may also act as a Ca(2+) sensor. The results show that Mg(2+) binds to the same sites as Ca(2+) with an association constant of approximately 1.4.10(3) m(-1) in 0.15 m KCl. The four high affinity sites in calbindin D(28k) bind Ca(2+) in a non-sequential, parallel manner. In the presence of physiological concentrations of Mg(2+), the Ca(2+) affinity is reduced by a factor of 2, and the cooperativity, which otherwise is modest, increases. Based on the binding constants determined in the presence of physiological salt concentrations, we estimate that at the Ca(2+) concentration in a resting cell calbindin D(28k) is saturated to 40-75% with Mg(2+) but to less than 9% with Ca(2+). In contrast, the protein is expected to be nearly fully saturated with Ca(2+) at the Ca(2+) level of an activated cell. A substantial conformational change is observed upon Ca(2+) binding, but only minor structural changes take place upon Mg(2+) binding. This suggests that calbindin D(28k) undergoes Ca(2+)-induced structural changes upon Ca(2+) activation of a cell. Thus, calbindin D(28k) displays several properties that would be expected for a protein involved in Ca(2+)-induced signal transmission and hence may function not only as a Ca(2+) buffer but also as a Ca(2+) sensor. Digestion patterns resulting from limited proteolysis of the protein suggest that the loop of EF-hand 2, a variant site that does not bind Ca(2+), becomes exposed upon Ca(2+) binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号