首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M M Bendig  T Thomas    W R Folk 《Journal of virology》1980,33(3):1215-1220
A polyoma virus mutant that maps in the early region between the known hr-t and ts-a mutants has been isolated. Its 66-base-pair deletion results in structural changes in both medium and large T-antigens but causes no substantial alterations in viral replication or cell transformation.  相似文献   

2.
S M Dilworth 《The EMBO journal》1982,1(11):1319-1328
The tyrosine-specific protein kinase activity previously described in T-antigens of polyoma virus immunoprecipitated with anti-tumour sera has been investigated using monoclonal antibodies. This activity is associated with middle T-antigen but it can be separated by selective antibody precipitation from the majority of this protein. The difference between active and inactive forms can be accounted for by an antigenic difference at the N terminus of middle T-antigen molecules. Moreover, the two different mol. wt. forms of middle T-antigen that can act as phosphoacceptors have been separated by antibody precipitation and therefore shown to be immunologically distinct. The binding position of the antibody used for immunoprecipitation has been observed to have a quantitative influence on the in vitro protein kinase reaction, in one case appearing to stimulate the activity. The detection of the in vitro protein kinase activity in immunoprecipitates obtained with several different monoclonal antibodies directed against the middle T-antigen indicates that the activity is a property tightly associated with this polyoma virus-coded protein.  相似文献   

3.
Stable neoplastic transformation of cells by polyoma virus requires the participation of two viral genes, designated ts-a and hr-t. The effects of mutations in these two genes on the patterns of T-antigen synthesis during productive infection have been previously described: ts- a mutants are affected in the “large” (100K) nuclear T antigen, and hr-t mutants are affected in the “middle” (36K, 56K, 63K) and “small” (22K) T agtigens. The latter are associated predominantly with the plasma membrane (56K) and cytosol fractions, rrespectively. Here we examine the expression of the various forms of polyoma T antigen in nonproductive infection (abortive transformation) as well as in stably transformed cell lines of different species. The results on abortive transformation are essentially the same as those described above for productive infection. In stably transformed cells, the middle and small T antigens are seen to various extents. The large T antigen, however, is often absent or present below the level of detection. Clones lacking the large T antigen are found most often among mouse transformants, but are also seen among rat transformants. Retention of the 100K species in transformed cells therefore appears to be, at least in part, an inverse function of the level of permissivity of the host toward productive viral infection. These findings indicate that the induction of the transformed phenotype in both abortively and stably transformed cells generally does not require the large T antigen, but rather the products of the hr-t gene.  相似文献   

4.
Phosphorylation of polyoma T antigens.   总被引:77,自引:0,他引:77  
The T antigens of polyoma virus have been examined for phosphorylation in vivo and associated protein kinase activities in vitro. The 100K "large" T antigen is the major phosphoprotein among the T antigen species in vivo as determined by labeling virus-infected cells with 32P-orthophosphate. Hr-t mutants show normal phosphorylation of their 100K T antigens. The wild-type 56K plasma membrane-associated "middle" T antigen is also phosphorylated in the cell, but to a lesser extent than the 100K; this low level phosphorylation is also observed in the presumably altered 56K protein induced by hr-t mutant NG59 and in the 50K truncated "middle" T of hr-t mutant SD15. Addition of dibutyryl cyclic AMP to the medium does not affect labeling of either large or middle T antigens in wild-type- or mutant-infected cells. Thus no differences are observed in T antigen phosphorylation in vivo between wild-type virus and hr-t mutants. Hr-t mutants are defective in a protein kinase activity assayed in vitro by adding gamma-32P-ATP to T antigen immunoprecipitates. In the case of wild-type virus, the 56K protein is the major phosphate acceptor in the in vitro kinase reaction, with a somewhat lower level of phosphorylation observed in the 100K band. Hr-t mutants NG59 and SD15 show no labeling of the altered 56K or 50K, respectively, but do show detectable levels of 32P in the 100K bands. A wild-type virus carrying a small deletion affecting the 100K and 56k bands shows a normal level of kinase activity associated with the truncated T antigens. Ts-a mutants appear to be normal with respect to the middle T antigen-associated kinase. Photoaffinity labeling of infected cell extracts with 8-azido cyclic AMP shows that the two major classes of regulatory subunits of cyclic AMP-dependent protein kinases are present in the immunoprecipitates. Phosphorylation of histone H1 occurs when this substrate is added to immunoprecipitates of either mock-infected or virus-infected cells, again demonstrating the presence of cellular kinases. Further experiments will be required to determine whether the middle T antigen of polyoma virus is itself a protein kinase or simply a substrate for one or more cellular kinases.  相似文献   

5.
T-antigen expression by polyoma mutants with modified RNA splicing   总被引:21,自引:1,他引:20       下载免费PDF全文
Polyoma virus mutants were constructed that could not express all the three T-antigens. The mutagenesis was directed to the two 5' splice sites utilized in the maturation of early RNA. The mutant bc1051 had a base change at the splice site of large T-antigen mRNA, and the mutants dl1061 and dl1062 had deletions at the corresponding splice point of small and middle T-antigen mRNA. The site was removed in mutant dl1061 and altered by fusion to upstream sequences in mutant dl1062. Analysis of viral RNA showed that dl1061 and dl1062 formed only large T-antigen mRNA, whereas bc1051 did not produce this RNA-species. However, the biological properties of dl1062 suggested that it also produced mRNA directing the synthesis of a small T-antigen-related polypeptide, at least in low amounts. Only mutant bc1051 could induce transformation of rat cells. In mouse 3T3 cells dl1062 multiplied to a limited extent, while bc1051 and dl1061 failed to produce virus. However, dl1061 DNA was synthesized at a low rate which could be increased to normal levels by co-transfection with mutant bc1051. This result suggests that polyoma small and middle T-antigen have a previously unrecognized function in the early phase of the infection process, or in viral DNA-synthesis.  相似文献   

6.
The viable polyoma mutants dl1013, dl1014, and dl1015 produced shortened middle and large T-antigens. In mouse 3T3 cells, dl1013 and dl1014 grew at normal rates, and dl1015 grew at a reduced rate. dl1015 behaved phenotypically as a double mutant, with deficiencies both in the stimulation of the host cell and the replication of viral DNA. Only the former defect could be complemented by the ts-a mutant, which produced a normal middle T-antigen and a temperature-sensitive large T-antigen. This result suggests that middle T-antigen is involved in the induction of cellular DNA synthesis. Of the three mutants, dl1015 alone failed to transform rat fibroblasts to growth in semisolid medium. This defect could not be complemented by the ts-a mutant. Determination of the base sequences of the mutant DNAs showed that dl1013 and dl1014 had overlapping deletions of 21 and 9 base pairs, respectively, and that the dl1015 deletion of 30 base pairs was contiguous to the other mutations on their 3' sides. Analyses of the mutant t-antigens showed that all three mutants produced shortened middle T-antigens, whereas only dl1015 large T-antigen was detectably reduced in size.  相似文献   

7.
Polyoma viral middle T-antigen is required for transformation.   总被引:17,自引:9,他引:8       下载免费PDF全文
To determine whether small or middle T-antigen (or both) of polyoma virus is required for transformation, we constructed mutants of recombinant plasmids which bear the viral oncogene and measured the capacity of these mutants to transform rat cells in culture. Insertion and deletion mutations in sequences encoding small and middle T-antigens (79.7, 81.3, and 82.9 map units) rendered the DNA incapable of causing transformation by the focus assay. Similar mutations in sequences that encoded middle but not small T-antigen (89.7, 92.1, and 96.5 map units) generally abolished the transforming activity of the DNA. However, two mutants (pPdl1-4 and PPd12-7) that carried deletions at 92.1 map units retained the capacity to transform cells; pPdl1-4 did so at frequencies equal to those of the parental plasmid, whereas pPdl2-7 transformed at 10% the frequency of its antecedent. From these studies we conclude that small T-antigen alone is insufficient to cause transformation and that middle T-antigen is required for transformation, either in combination with small T-antigen or by itself.  相似文献   

8.
At least three distinct forms of polyoma virus tumor antigens were isolated from productively infected and transformed hamster cells by immunoprecipitation with anti-T serum. These proteins had approximate molecular weights of 105,000 (large T antigen), 63,000 (middle T antigen), and 20,000 (small T antigen) as estimated by acrylamide gel electrophoresis. An examination of the appearance of these antigens in polyoma-infected mouse cells showed that all three polypeptides were synthesized maximally at approximately the same time after infection. Analysis of the methionine-containing tryptic peptides of these proteins indicated that the large, middle, and small forms of polyoma T antigens contained five similar or identical peptides. In addition, the 63,000- and 20,000-dalton antigens contained two other methionine peptides absent from the large T-antigen species. Other methionine peptides were found only in the large or middle T-antigen forms. These results and results obtained previously suggested that the three T-antigen species have the same NH2-terminal end regions but different COOH termini. A model is presented describing the synthesis of these polypeptides from different regions of the polyoma virus genome.  相似文献   

9.
The polyomavirus tumour (T) antigens were originally identified by their reactivity with antisera from tumour-bearing animals. The primary structure of the three T-antigens has been established by combining the information from the nucleotide sequencing of DNA, RNA analysis, and peptide mapping. The functions of the T-antigens in productive infection and cellular transformation have largely been analysed by using virus mutants. The large T-antigen binds specifically to polyomavirus DNA. This binding is probably linked to the activity of the protein in the control of viral DNA and RNA synthesis. In addition, the large T-antigen has the ability to confer an unlimited growth potential to cells in culture. The middle T-antigen is a primary inducer of cellular transformation. The part of this protein that is located in the plasma membrane, is associated with a tyrosine kinase activity. The small T-antigen, finally, has not yet been studied extensively. However, small T-antigen has to be expressed to allow a complete productive infection cycle in mouse cells.  相似文献   

10.
Tumor antigens induced by nontransforming mutants of polyoma virus.   总被引:48,自引:0,他引:48  
J Silver  B Schaffhausen  T Benjamin 《Cell》1978,15(2):485-496
We have studied the tumor (T) antigens induced by wild-type polyoma virus and several nontransforming mutants using immunoprecipitation with antisera from animals bearing polyomya-induced tumors followed by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. In a variety of mouse cells, wild-type virus induces a major T antigen species with apparent molecular weight of 100,000 daltons, and four minor T antigen species with apparent molecular weights of 63,000, 56,000, 36,000 and 22,000 daltons. Hr-t mutants, which have an absolute defect in transformation, induce a normal 100,000 dalton T antigen but are altered in the minor T antigen species. Hr-t deletion mutants induce none of the minor T antigen species seen in wild-type virus. In their place, these mutants induce T antigen species with molecular weights in the range of 6,000--9,000 daltons. The size of the very small T antigen products does not correlate in any simple way with the size or location of the deletions in the viral DNA. Point hr-t mutants induce two of the four minor T antigen species; they make apparently normal amounts of the 56,000 dalton product and reduced amounts of the 22,000 dalton product, but none of the 63,000 or 36,000 dalton species. Ts-a mutants, which have a temperature-sensitive defect in the ability to induce stable transformation, and which complement hr-t mutants, induce T antigens with the same mobility as wild-type; however, the 100,000 dalton T antigen of ts-a mutants is thermolabile compared to wild-type. A double mutant virus carrying both a ts-a mutation and a deletion hr-t mutation induces a thermolabile 100,000 dalton product and none of the minor T antigen species. Cell fractionation studies with productively infected cells have been carried out to localize the T antigen species.  相似文献   

11.
Malignant transformation of cells by polyoma virus results from the continual expression of a viral gene (hr-t) the normal function of which is to facilitate productive viral infection. The series of investigations described here on the polyoma hr-t gene originated with attempts to understand polyoma virus-cell interactions along lines suggested by temperate bacteriophage. Nucleic acid hybridization experiments indicated clearly that viral DNA persists in transformed cells and continues to be expressed. Radiobiological and other experiments, however, suggested a function for the expressed gene(s) which was not expected of a prophage: the promotion, rather than repression, of lytic virus growth. The hr-t gene acts pleiotropically to alter the physiological state of the host in a manner which facilitates virus production and induces a transformed cellular phenotype. The cellular alterations are manifested transiently during productive infection or abortive transformation, but permanently when the viral genome is integrated in stably transformed cells. hr-t mutants are defective in their growth in mice and in most cultured mouse cell lines. They are also unable to induce tumors or any of the morphological, structural, or growth-related changes which accompany cells transformation by the wild-type virus.The 22 kDa and 56 kDa proteins encoded in the early region of the viral DNA constitute dual products of the hr-t gene. hr-t mutants are localized in a narrow segment of the early region that specifies an amino acid sequence shared by these two overlapping proteins. Current efforts to link structural (i.e., mutational) changes with functional changes in these proteins center around the 56 kDa middle T antigen and its associated protein kinase activity. Assayed in vitro, this activity leads to phosphorylation of the 56 kDa protein itself, predominantly at a specific tyrosine residue in the C-terminal portion of the molecule. The middle T protein is anchored in cellular membranes by a hydrophobic tail close to the C-terminus. Membrane association is essential for transformation, as well as for the kinase activity. The common region of the 22 kDa/56 kDa proteins where hr-t mutants map has local regions of homology with highly conserved sequences in the pituitary glycoprotein hormones. The integrity of this region is also essential for transformation and for kinase activity. In vivo, the 56 kDa protein is a substrate for cellular kinase(s) and undergoes multiple phosphorylations (serine and/or threonine) that may affect the tyrosine-specific activity. These kinase reactions, originating in cellular membrane but potentially affecting pathways into the cytoplasm and nucleus, currently provide the most plausible biochemical mechanism underlying the pleiotropic effects of the hr-t gene.  相似文献   

12.
In mouse cells transformed with the ts-a mutant of polyoma virus (ts-a-3T3), only low amounts of the virus-specific T antigen were synthesized at high temperature (39 C). After a shift-down to the permissive temperature (31 C), these cells exhibited the same level of T-antigen production as wild-type polyoma transformants. The T antigen produced by ts-a-transformed cells was inactivated at 39 C in vitro at a faster rate than that produced by wild-type-transformed cells. These observations indicate that T antigen is, or includes, a virus-coded peptide.  相似文献   

13.
We constructed a set of polyomavirus mutants with alterations in the DNA sequences encoding large T-antigen. The mutant genomes were cloned and propagated as recombinants of plasmid pBR322, and the presence of the mutations was confirmed by nucleotide sequence analysis. To facilitate the analysis of defects in the function of large T-antigen, the dl1061 deletion was introduced into the mutant genomes. This deletion restricts the early gene expression to the synthesis of large T-antigen (Nilsson and Magnusson, EMBO J. 2:2095-2101, 1983). The mutant large T-antigens were identified after radioactive labeling. Their functional characterization was based on analysis of DNA binding, activity in the replication of viral DNA, and cellular localization. The native large T-antigen, which is 785 amino acid residues long, binds specifically to the regulatory region of polyomavirus DNA. This binding was significantly reduced by the deletion of amino acid residues 136 to 260. Nevertheless, this mutant large T-antigen was active in the initiation of viral DNA replication. Conversely, all of the mutants in this study that produced large T-antigens with alterations in the carboxy-terminal 146 amino acid residues had normal DNA-binding properties. However, these mutants were inactive in viral DNA synthesis and also inhibited the replication of wild-type DNA in cotransfected cells. The analysis of mutant dl2208 (Nilsson et al., J. Virol. 46:284-287, 1983) led to unexpected results. Its large T-antigen, missing amino acid residues 191 to 209, was overproduced. Although the protein had normal DNA-binding properties, it was not entering the cell nucleus normally. Furthermore, the dl2208 DNA replication was extremely low in the absence of small and middle T-antigens but was normal in the presence of these proteins.  相似文献   

14.
The distribution of two of the polyoma virus early proteins (the large and middle T-antigens) in lytically infected mouse cells and transformed rat cells has been investigated by indirect immunofluorescence and immuno-electron microscopy using well-characterised monoclonal antibodies. By these techniques, the viral large T-antigen was found almost exclusively in the nucleus, sometimes in association with nuclear pores, but never in the nucleolus. In lytically infected, but not transformed cells, fluorescence was detected in discrete areas ('hot spots') within the nucleus and, in a minor population of lytically infected cells, cytoplasmic immunoreactive material was observed. The viral middle T-antigen was found in association with most cytoplasmic membranes and in the majority of cells mainly in the endoplasmic reticulum. Only a fraction of the staining was observed in the plasma membrane and no staining in the nucleoplasm was observed. The data suggest that the site of action of the major transforming activity of polyoma virus need not be at the plasma membrane. Functions associated with the viral antigens are discussed in terms of their subcellular distributions within cells.  相似文献   

15.
Polyoma virus. The early region and its T-antigens.   总被引:12,自引:2,他引:10  
The DNA sequence of the early coding region of polyoma virus is presented. It consists of 2739 nucleotides. The sequence predicts that more than one reading frame can be used to code for the three known polyoma virus early proteins (designated small, middle and large T-antigens). From the DNA sequence, the 'splicing' signals used in the processing of viral RNA to functional messenger RNAs can be predicted, as well as the sizes and sequences of the three proteins. Other unusual aspects of the DNA sequence are noted. Comparisons are made between the DNA sequences and the predicted amino acid sequences of the respective large T-antigens of polyoma virus and the related virus Simian Virus (SV) 40.  相似文献   

16.
The hr-t gene of polyoma virus encodes both the small and middle T (tumor) antigens and exerts pleiotropic effects on cells. By mutating the 3' splice site for middle T mRNA, we have constructed a virus mutant, Py808A, which fails to express middle T but encodes normal small and large T proteins. The mutant failed to induce morphological transformation or growth in soft agar, but did stimulate postconfluent growth of normal cells. Cells infected by Py808A became fully agglutinable by lectins while retaining normal actin cable architecture and normal levels of extracellular fibronectin. These properties of Py808A demonstrated the separability of structural changes at the cell surface from those in the cytoskeleton and extracellular matrix, parameters which have heretofore been linked in the action of the hr-t and other viral oncogenes.  相似文献   

17.
Y Ito  N Spurr    B E Griffin 《Journal of virology》1980,35(1):219-232
A large number of polyoma virus-transformed cells of rat, mouse, and hamster origin were examined for presence of T-antigen species. The results showed that all lines of cells contained middle and small T antigens, but not all contained a full-sized large T antigen, in some cell lines large T antigen was absent, whereas in others it was present as truncated forms lacking various lengths of the carboxy-terminal part of the protein. Cells transformed by the new viable deletion mutants of polyoma virus, dl-8 and dl-23, formed larger and smaller colonies or foci, respectively, when they were suspended in semisolid medium or plated as monolayers together with untransformed cells on a plastic surface. The deletions in the DNA of these mutants resulted in the shortening of the large and middle T antigens simultaneously without affecting the size of the small T antigen. Variation of large T-related proteins in dl-8 and dl-23-transformed cells seemed to be the same as that observed in wild-type-transformed cells. Regardless of the amount and size of large T-related protein in mutant-transformed cells, the phenotype of the cells was entirely dependent on the mutant used. The results suggest that (i) persistence of large T antigen is not universally required for the maintenance of the transformation phenotype, (ii) small T antigen alone may not be sufficient for inducing the full expression of the transformation phenotype, and (iii) middle T antigen is implicated as being primarily responsible for the full expression of the phenotype of transformation. The results also provide the evidence that the carboxy-terminal region of middle T antigen and a part of large T antigen are encoded in the genome in the same DNA segment around map units 88 to 94 in different reading frames.  相似文献   

18.
mlt Mutants of polyoma virus   总被引:5,自引:4,他引:1       下载免费PDF全文
New mlt deletion mutants of polyoma virus were isolated, and their abilities to produce a lytic response in mouse cells or to transform rat cells were assessed. Their properties were analyzed in terms of the sequences deleted and their effects upon the structure and functions of the viral middle and large T-antigens.  相似文献   

19.
The tumor antigens and the early functions of polyoma virus   总被引:12,自引:0,他引:12  
Summary Polyoma virus (Py) tumor (T) antigens are the proteins specified by the early region of the viral genome. They are responsible for most biological effects caused by this oncogenic virus, i.e. induction of tumors, cell transformation and most of the virus-induced events observed in productive and transforming infection. By immunoprecipitation with antitumor serum followed by gel electrophoresis three major Py T-antigens have been characterized: large Tantigen (IT) with an apparent MT of about 100 000, middle T-antigen (mT) of about 55 000 Mr and small T-antigen (sT) of about 23 000 Mr. In addition, there may exist one or more minor species by Py T-antigens. Analysis of the tryptic peptides showed that IT, mT and sT have a common N-terminal amino acid sequence, but differ from each other in the size and the sequence of the C-terminal part of the molecule as a consequence of different splicing of their mRNAs. With the nucleotide sequence of the Py genome being known, the coding regions for each of the Py T-antigens have been identified and consequently the amino acid sequence of IT, mT and sT was deduced. Cell fractionation experiments showed that the major part of 1T is located in the nucleus, mT was found in plasma membranes and sT is mainly present in the cytoplasm. Large T is a phosphoprotein and undergoes posttranslational modification. Two-dimensional gel electrophoresis of Py T-antigens revealed considerable charge heterogeneity particularly for mT and sT.All Py transformed cell lines analyzed contained mT and sT. Large T was not detected in virtually all Py transformed mouse cell lines and in about one third of Py transformed rat and hamster cell lines. Instead of 1T often new immunoreactive proteins were found which are probably truncated forms of 1T. These and other recent results suggest that IT is required neither for initiation nor for maintenance of cell transformation. For tumor induction in hamsters, similar conclusions were reached from analysis of Py T-antigens and viral DNA sequences in cell lines derived from tumors that had been induced either by virus or by viral DNA digested with various restriction enzymes. Experiments done with several deletion mutants indicated that mT is required for cell transformation by Py. In a protein kinase assay done in vitro with Py T-antigen immunoprecipitates, a kinase activity associated with Py mT was found which phosphorylates tyrosine residues mainly of mT and less frequently of 1T and of rat immunoglobulins. In all transformation defective mutants, kinase activity measured by this assay was absent or strongly reduced.In a concluding chapter I discuss the events occurring in wild-type virus and mutant infected cells trying to attribute specific functions to each of the three Py T-antigens. At least two functions are known for 1T, one is initiation of viral DNA replication, the other induces a mitotic response of the host cell, i.e. the events leading to and including host chromatin duplication. Middle T-antigen is certainly involved in cell transformation, possibly by its presence in the membrane. No function has been defined yet for sT. Since there are more virus-induced events observed in infected cells than Py T-antigens at least one of them must be a multifunctional protein.  相似文献   

20.
R Schlegel  T L Benjamin 《Cell》1978,14(3):587-599
Hr-t mutants of polyoma virus are restricted in their growth properties (host range) and defective in cell transformation and tumor induction. The present study indicates that these mutants have lost the ability to induce morphological transformation, but have retained a mitogenic function. Thus an early and dramatic difference between wild-type virus and hr-t mutant-infected cultures of rat fibroblasts is the morphological change in individual cells observed by light, fluorescence and scanning electron microscopy. Viruses containing an intact hr-t function (wild-type virus and ts-a mutants) induce a transformed phenotype consisting of stellate cell shape, loss of defined cytoplasmic actin architecture, cellular "underlapping," and increased nuclear and nucleolar sizes. These prominent alterations constitute an abortive transformation, peaking 24-48 hr post-infection, and subsequently resolving in most or all of the cells. In contrast, cells infected with hr-t mutants do not develop the above structural changes, but rather retain their preinfection appearance. Both wild-type virus and hr-t mutants induce cellular DNA synthesis in confluent monolayers of rat cells beginning 12-14 hr post-infection. Flow microfluorometric (FMF) analysis confirms the viral mediated transit of cells from the G1 to the S and G2 phases of the cell cycle, as well as an increase in the proportion of cells with an 8N (octaploid) DNA content. Approximately 50% of the clones isolated from wild-type-infected cultures are polyploid. Stable transformants are found among these polyploid clones, but the majority of the latter resemble the parental cells in their morphology and growth properties. Polyploid clones are derived from hr-t mutant-infected cultures at a much lower frequency, similar to that of mock-infected cultures. Data obtained by sequential labeling of infected cultures with 3 H-thymidine and 5-bromo-deoxyuridine, together with cell number quantitation, indicate that hr-t mutants promote only a single round of cell division, while the wild-type virus and ts-a mutants promote multiple rounds. Loss of the hr-t function in polyoma virus therefore reveals a residual viral mitogenic activity, but prevents the virus from effecting morphological transformation of cells with concomitant loss of defined actin cables, polyploidization and multiple cycles of cell division in confluent cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号