首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33–36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.  相似文献   

2.
Here we demonstrate that flagellar secretion is required for production of secreted lipase activity in the fish pathogen Yersinia ruckeri and that neither of these activities is necessary for virulence in rainbow trout. Our results suggest a possible mechanism for the emergence of nonmotile biotype 2 Y. ruckeri through the mutational loss of flagellar secretion.Yersinia ruckeri is the etiologic agent of enteric redmouth disease, a disease of salmonid fish species that is found worldwide in areas where salmonid fish species are farmed (3, 6, 18, 20). Vaccines for enteric redmouth disease have been used successfully for nearly 3 decades and consist of immersion-applied, killed whole-cell preparations of motile serovar 1 Y. ruckeri strains (22). Recently though, outbreaks have been reported in vaccinated fish at trout farms in the United Kingdom (2), Spain (9), and the United States (1). The Y. ruckeri strains isolated from these outbreaks are uniformly atypical serovar 1 isolates lacking both flagellar motility and secreted lipase activity. These variants have been classified as Y. ruckeri biotype 2 (BT2) and are believed to have a reduced sensitivity to immersion vaccination (2). The objective of this study was to obtain a better understanding of the emergence of BT2 Y. ruckeri by identifying genetic elements necessary for expression of the Y. ruckeri flagellum and determining the role that the flagellum plays in virulence by using a rainbow trout infection model.  相似文献   

3.
The presence of Yersinia ruckeri in a French fish farm was investigated. Y. ruckeri was isolated mainly from algae and sediment samples rather than from water. Twenty-two Y. ruckeri isolates were obtained, and three strains were distinguished by enterobacterial repetitive intergenic consensus PCR amplification. These strains were able to adhere to solid supports. This characteristic was correlated with flagellum-mediated motility. Killing experiments showed that sessile cells were more resistant to oxolinic acid than their planktonic counterparts. Our results demonstrate that surface colonization of fish farm tanks by Y. ruckeri biofilms is a potential source of recurrent infection for extended periods of time.  相似文献   

4.
Six bacteriophages active against Leuconostoc fallax strains were isolated from industrial sauerkraut fermentation brines. These phages were characterized as to host range, morphology, structural proteins, and genome fingerprint. They were exclusively lytic against the species L. fallax and had different host ranges among the strains of this species tested. Morphologically, three of the phages were assigned to the family Siphoviridae, and the three others were assigned to the family Myoviridae. Major capsid proteins detected by electrophoresis were distinct for each of the two morphotypes. Restriction fragment length polymorphism analysis and randomly amplified polymorphic DNA fingerprinting showed that all six phages were genetically distinct. These results revealed for the first time the existence of bacteriophages that are active against L. fallax and confirmed the presence and diversity of bacteriophages in a sauerkraut fermentation. Since a variety of L. fallax strains have been shown to be present in sauerkraut fermentation, bacteriophages active against L. fallax are likely to contribute to the microbial ecology of sauerkraut fermentation and could be responsible for some of the variability observed in this type of fermentation.  相似文献   

5.
The clinical relevance of nosocomially acquired infections caused by multi-resistant Achromobacter strains is rapidly increasing. Here, a diverse set of 61 Achromobacter xylosoxidans strains was characterized by MultiLocus Sequence Typing and Phenotype MicroArray technology. The strains were further analyzed in regard to their susceptibility to 35 antibiotics and to 34 different and newly isolated bacteriophages from the environment. A large proportion of strains were resistant against numerous antibiotics such as cephalosporines, aminoglycosides and quinolones, whereas piperacillin-tazobactam, ticarcillin, mezlocillin and imipenem were still inhibitory. We also present the first expanded study on bacteriophages of the genus Achromobacter that has been so far a blank slate with respect to phage research. The phages were isolated mainly from several waste water treatment plants in Germany. Morphological analysis of all of these phages by electron microscopy revealed a broad diversity with different members of the order Caudovirales, including the families Siphoviridae, Myoviridae, and Podoviridae. A broad spectrum of different host ranges could be determined for several phages that lysed up to 24 different and in part highly antibiotic resistant strains. Molecular characterisation by DNA restriction analysis revealed that all phages contain linear double-stranded DNA. Their restriction patterns display distinct differences underlining their broad diversity.  相似文献   

6.
Halobacteriovorax (formerly Bacteriovorax) is a small predatory bacterium found in the marine environment and modulates bacterial pathogens in shellfish. Four strains of Halobacteriovorax originally isolated in Vibrio parahaemolyticus O3:K6 host cells were separated from their prey by an enrichment-filtration-dilution technique for specificity testing in other bacteria. This technique was essential, since 0.45-μm filtration alone was unable to remove infectious Vibrio minicells, as determined by scanning electron microscopy and cultural methods. Purified Halobacteriovorax strains were screened for predation against other V. parahaemolyticus strains and against Vibrio vulnificus, Vibrio alginolyticus, Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium DT104, all potential threats to seafood safety. They showed high host specificity and were predatory only against strains of V. parahaemolyticus. In addition, strains of Halobacteriovorax that were predatory for E. coli O157:H7 and S. Typhimurium DT104 were isolated from a tidal river at 5 ppt salinity. In a modified plaque assay agar, they killed their respective prey over a broad range of salinities (5 to 30 ppt). Plaques became smaller as the salinity levels rose, suggesting that the lower salinities were optimal for the predators'' replication. These species also showed broader host specificity, infectious against each other''s original hosts as well as against V. parahaemolyticus strains. In summary, this study characterized strains of Halobacteriovorax which may be considered for use in the development of broad-based biocontrol technologies to enhance the safety of commercially marketed shellfish and other foods.  相似文献   

7.
Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that “enhanced infection” is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.  相似文献   

8.
The Classical Vibrio cholerae strain NIH 41 contains two temperate bacteriophages, designated VcA-1 and VcA-2, that are distinguished by immunity, plaque morphology, induction kinetics, and particle morphology. Both phage are serologically related to phage Kappa. However, only phage VcA-2 has the Kappa type host range and immunity. The induction kinetics and immunity patterns of Classical vibrios suggest that these strains may contain defective phage related to the phages isolated from NIH 41. Classical strain 569B releases phage-tail structures upon induction that are morphologically and serologically related to both phages VcA-1 and VcA-2. The possible reason for the defectiveness of these phages in 569B is discussed. It is concluded that complete or defective bacteriophages of the Kappa type morphology and serology are extremely prevalent in V. cholerae, regardless of biotype.  相似文献   

9.
Antimicrobial susceptibility of seven clinical strains of Yersinia ruckeri representative of those isolated between 1994 and 2002 from a fish farm with endemic enteric redmouth disease was studied. All isolates displayed indistinguishable pulsed-field gel electrophoresis restriction patterns, indicating that they represented a single strain. However, considering both inhibition zone diameters (IZD) and MICs, the isolates recovered in 2001-2002 formed a separate cluster with lower levels of susceptibility to all the quinolones tested, especially nalidixic acid (NA) and oxolinic acid (OA), compared with the isolates recovered between 1994 and 1998. Analysis of the PCR product of the quinolone resistance-determining region of the gyrA gene from clinical isolates of Y. ruckeri with reduced susceptibility to OA and NA revealed a single amino acid substitution, Ser-83 to Arg-83 (Escherichia coli numbering). Identical substitution was observed in induced OA-resistant mutant strains, which displayed IZD and MICs of quinolones similar to those of the clinical isolates of Y. ruckeri with reduced susceptibility to these antimicrobial agents. These data indicate in that for Y. ruckeri, the substitution of Ser by Arg at position 83 of the gyrA gene is associated with reduced susceptibility to quinolones.  相似文献   

10.
A total of 264 bacterial strains tentatively or definitely classified as Vibrio anguillarum were examined. The strains were isolated from diseased or healthy Norwegian fish after routine autopsy. With the exception of five isolates from wild saithe (Pollachius virens), the strains originated from nine different species of farmed fish. The bacteria were subjected to morphological, physiological, and biochemical studies, numerical taxonomical analyses, serotyping by slide agglutination and enzyme-linked immunosorbent assay, DNA-plasmid profiling, and in vitro antimicrobial drug susceptibility testing. The results of the microbiological studies were correlated to anamnestic information. The bacterial strains were identified as V. anguillarum serovar O1 (n = 132), serovar O2 (n = 89), serovar O4 (n = 2), serovar O8 (n = 1), and not typeable (n = 1) as well as Vibrio splendidus biovar I (n = 36) and biovar II (n = 1), Vibrio tubiashii (n = 1), and Vibrio fischerii (n = 1). V. anguillarum serovar O1 or O2 was isolated in 176 out of 179 cases of clinical vibriosis in Atlantic salmon (Salmo salar). V. anguillarum serovar O1 was the only serovar isolated from salmonid fish species other than Atlantic salmon, while V. anguillarum serovar O2 was isolated from all marine fish suffering from vibriosis. A 48-Mda plasmid was isolated from all V. anguillarum serovar O1 isolates examined. Serovar O2 isolates did not harbor any plasmids. Resistance against commonly used antibiotic compounds was not demonstrated among V. anguillarum isolates. Neither V. splendidus biovar I nor other V. anguillarum-related species appeared to be of clinical importance among salmonid fish.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×107 CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (P<0.05). A similar challenge experiment conducted in Vietnam with four of the five Bacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture.  相似文献   

12.
The eel pathogen Vibrio vulnificus biotype 2 comprises at least three serovars, with serovar E being the only one involved in both epizootics of eel vibriosis and sporadic cases of human infections. The virulent strains of this serovar (VSE) have only been recovered from clinical (mainly eel tissue) sources. The main objective of this work was to design and validate a new protocol for VSE-specific isolation from environmental samples. The key element of the new protocol is the broth used for the first step (saline eel serum broth [SEB]), which contains eel serum as a nutritive and selective component. This approach takes advantage of the ability of VSE cells to grow in eel serum and thus to separate themselves from the pool of competitors. The growth yield in SEB after 8 h of incubation was 1,000 times higher for VSE strains than for their putative competitors (including biotype 1 strains of the species). The selective and differential agar Vibrio vulnificus medium (VVM) was selected from five selective media for the second step because it gave the highest plating efficiency not only for the VSE group but also for other V. vulnificus groups, including biotype 3. The entire protocol was validated by field studies, with alkaline peptone water plus VVM as a control. V. vulnificus was isolated by both protocols, but serovar E was only recovered by the new method described here. All selected serovar E isolates were identified as VSE since they were virulent for both eels and iron-overloaded mice and resisted the bactericidal action of eel and iron-overloaded human sera. In conclusion, this new protocol is a suitable method for the isolation of VSE strains from environmental samples and is recommended for epidemiological studies of the pathogenic serovar E.  相似文献   

13.
Correlation between the numbers of Vibrio parahaemolyticus and its specific bacteriophages in cockles was investigated from June 2009 to May 2010 in Hat Yai, Songkhla, Thailand. Cockles obtained monthly from a local market were sampled to determine the numbers of V. parahaemolyticus and bacteriophages that could form plaques on ten strains of pandemic and nonpandemic V. parahaemolyticus. In addition, V. parahaemolyticus isolates from clinical samples from Hat Yai hospital over the same period were investigated. All 139 cockles sampled were positive for V. parahaemolyticus. However, only 76 of them were positive for bacteriophages. During the testing period, the number of bacteriophages was not significantly correlated with the incidence of V. parahaemolyticus-infected patients, but the numbers of V. parahaemolyticus isolates from the cockle samples were closely related to the number of infected patients. The bacteriophages isolated from V. parahaemolyticus also infected Vibrio alginolyticus and Vibrio mimicus, suggesting that the broad host range of phages may be a factor of providing the possibility of their participation in the processes of genetic exchange between V. parahaemolyticus and closely related Vibrio spp. In conclusion, this study indicated that the number of V. parahaemolyticus in cockles may be a useful tool for predicting the relative risk of infection by V. parahaemolyticus in this area of Thailand.  相似文献   

14.
Vibrio vulnificus can be divided into three biotypes, and only biotype 2, which is further divided into serovars, contains eel-virulent strains. We compared the genomic DNA of a biotype 2 serovar E isolate (tester) with the genomic DNAs of three biotype 1 strains by suppression subtractive hybridization and then tested the distribution of the tester-specific DNA sequences in a wide collection of bacterial strains. In this way we identified three plasmid-borne DNA sequences that were specific for biotype 2 strains irrespective of the serovar and three chromosomal DNA sequences that were specific for serovar E biotype 2 strains. These sequences have potential for use in the diagnosis of eel vibriosis caused by V. vulnificus and in the detection of biotype 2 serovar E strains.  相似文献   

15.
Twenty bacteriophages active against Vibrio parahaemolyticus and agar-digesting vibrios, isolated from oysters (Crassostrea gigas) and Dungeness crab (Cancer magister) and by induction of a lysogenic agar digester, were tested as to their host range. These phages were specific for V. parahaemolyticus and various agar-digesting vibrios, and interspecies lysis occurred only between these two groups. V. alginolyticus, V. anguillarum and related species, V. cholerae, and a group of marine psychrophilic and psychrotrophic vibrios were not affected. No correlation was observed between the O and K serotypes of V. parahaemolyticus strains and bacteriophage susceptibility patterns, and 7 of 28 strains of V. parahaemolyticus were not lysed by any of the phages. Only two of the phage isolates were capable of lysing all susceptible V. parahaemolyticus strains. No correlation was observed between the inter-and intraspecies genetic relatedness (DNA homologies) of V. parahaemolyticus and agar-digesting vibrios and susceptibility patterns to different bacteriophages. Some of the phages were capable of plaque formation on V. parahaemolyticus as well as on some strains of agar-digesting vibrios that were separated by 70 to 80% differences in their DNA homologies. The possible ecological significance of these vibrio bacteriophages, particularly those having a wide host range, is discussed.  相似文献   

16.
Erwinia amylovora is a devastating bacterial plant pathogen that infects Rosaceae including apple and pear and causes fire blight. Bacteriophages have been considered as a biological control agent for preventing bacterial infections of plants. In this study, nine bacteriophages (ΦFifi011, ΦFifi044, ΦFifi051, ΦFifi067, ΦFifi106, ΦFifi287, ΦFifi318, ΦFifi450, and ΦFifi451) were isolated from soil and water samples in seven orchards with fire blight in Korea. The genetic diversity of bacteriophage isolates was confirmed through restriction fragment length polymorphism pattern analysis. Host range of the nine phages was tested against 45 E. amylovora strains and 14 E. pyrifoliae strains and nine other bacterial strains. Among the nine phages, ΦFifi044 and ΦFifi451 infected and lysed E. amylovora only. And the remaining seven phages infected both E. amylovora and E. pyrifoliae. The results suggest that the isolated phages were different from each other and effective to control E. amylovora, providing a basis to develop biological agents and utilizing phage cocktails.  相似文献   

17.
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from “pyophage”, a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.  相似文献   

18.
A total of 79 Clostridium difficile strains from different sources (50 strains from the fecal specimens of healthy adults, 13 from patients receiving antibiotics without gastrointestinal complications, 13 from antibiotic-associated pseudomembranous colitis (PMC) or diarrhea patients, and three strains from ATCC) were investigated for agglutinability, using formol-treated cells as antigen, in relation to toxigenicity. C. difficile strains tested were divided into four serovars, I, II, III, and IV, by the cross-agglutination test. The agglutinin absorption test revealed that strains of serovar I, agglutinable with high titers (5,120–10,240) to antiserum prepared against a highly toxigenic C. difficile strain, ATCC 17859, possessed the serovar-specific antigen. All of the strains of serovar I were highly toxigenic and all 13 strains isolated from the fecal specimens of antibiotic-associated PMC or diarrhea patients belonged to this serovar, whereas 19 (38%) out of 50 strains from healthy adults and four (30.8%) out of 13 strains from patients receiving antibiotics without gastrointestinal complications possessed this antigen. None of the strains of other clostridial species than C. difficile were agglutinated by the three reference antisera used. Further study on the sugar fermentation test disclosed that the sorbitol-fermenting property of C. difficile is very closely related to the toxigenicity and agglutinability.  相似文献   

19.
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4°C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4°C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

20.
This is the first report identifying bacteriophages and documenting megaplasmids of Sinorhizobium fredii. Plasmid DNA content and bacteriophage typing of eighteen strains of S. fredii were determined. S. fredii strains fell into ten plasmid profile groups containing 1 to 6 plasmids, some evidently larger than 1000 MDa. Twenty-three S. fredii lytic phages were isolated from soil, and they lysed six different S. fredii strains. The host range and plaque morphology of these phages were studied. Susceptibility to S. fredii phages was examined for S. meliloti; Rhizobium leguminosarum bvs. viceae, trifolii and Phaseoli; R. loti; Bradyrhizobium japonicum; B. elkanii and Bradyrhizobium sp. (Arachis). Several phages that originally lysed S. fredii strain USDA 206 also lysed strains of all three S. fredii serogroups described originally by Sadowsky et al. Phages that infected S. fredii strains USDA 191 and USDA 257 were highly specific and lysed only serogroup 193 strains. S. meliloti strains L5-30 and USDA 1005 were lysed by three of the phages that lysed S. fredii strain USDA 217. No other Rhizobium or Bradyrhizobium strain tested was susceptible to lysis by any of the S. fredii phages. The present investigation indicates that phage susceptibility in conjunction with plasmid profile analysis may provide a rapid method for identification and characterization of strains of S. fredii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号