首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adenosine deaminases that act on RNA (ADARs) catalyze adenosine to inosine conversion in RNA that is largely double stranded. Human ADAR2 (hADAR2) contains two double-stranded RNA binding motifs (dsRBMs), separated by a 90-amino acid linker, and these are followed by the C-terminal catalytic domain. We assayed enzymatic activity of N-terminal deletion constructs of hADAR2 to determine the role of the dsRBMs and the intervening linker peptide. We found that a truncated protein consisting of one dsRBM and the deaminase domain was capable of deaminating a short 15-bp substrate. In contrast, full-length hADAR2 was inactive on this short substrate. In addition, we observed that the N terminus, which was deleted from the truncated protein, inhibits editing activity when added in trans. We propose that the N-terminal domain of hADAR2 contains sequences that cause auto-inhibition of the enzyme. Our results suggest activation requires binding to an RNA substrate long enough to accommodate interactions with both dsRBMs.  相似文献   

3.
4.
5.
One type of RNA editing involves the conversion of adenosine residues into inosine in double-stranded RNA through the action of adenosine deaminases acting on RNA (ADAR). A-to-I RNA editing of the coding sequence could result in synthesis of proteins not directly encoded in the genome. ADAR edits also non-coding sequences of target RNAs, such as introns and 3'-untranslated regions, which may affect splicing, translation, and mRNA stability. Three mammalian ADAR gene family members (ADAR1-3) have been identified. Here we investigated phenotypes of mice homozygous for ADAR1 null mutation. Although live ADAR1-/- embryos with normal gross appearance could be recovered up to E11.5, widespread apoptosis was detected in many tissues. Fibroblasts derived from ADAR1-/- embryos were also prone to apoptosis induced by serum deprivation. Our results demonstrate an essential requirement for ADAR1 in embryogenesis and suggest that it functions to promote survival of numerous tissues by editing one or more double-stranded RNAs required for protection against stress-induced apoptosis.  相似文献   

6.
Chang KY  Ramos A 《The FEBS journal》2005,272(9):2109-2117
The double-stranded RNA-binding motif (dsRBM) is an alphabetabetabetaalpha fold with a well-characterized function to bind structured RNA molecules. This motif is widely distributed in eukaryotic proteins, as well as in proteins from bacteria and viruses. dsRBM-containing proteins are involved in processes ranging from RNA editing to protein phosphorylation in translational control and contain a variable number of dsRBM domains. The structural work of the past five years has identified a common mode of RNA target recognition by dsRBMs and dissected this recognition into two functionally separated interaction modes. The first involves the recognition of specific moieties of the RNA A-form helix by two protein loops, while the second is based on the interaction between structural elements flanking the RNA duplex with the first helix of the dsRBM. The latter interaction can be tuned by other protein elements. Recent work has made clear that dsRBMs can also recognize non-RNA targets (proteins and DNA), and act in combination with other dsRBMs and non-dsRBM motifs to play a regulatory role in catalytic processes. The elucidation of functional networks coordinated by dsRBM folds will require information on the precise functional relationship between different dsRBMs and a clarification of the principles underlying dsRBM-protein recognition.  相似文献   

7.
Site-selective adenosine (A) to inosine (I) RNA editing by the ADAR enzymes has been found in a variety of metazoan from fly to human. Here we describe a method to detect novel site-selective A to I editing that can be used on various tissues as well as species. We have shown previously that there is a preference for ADAR2-binding to selectively edited sites over non-specific interactions with random sequences of double-stranded RNA. The method utilizes immunoprecipitation (IP) of intrinsic RNA–protein complexes to extract substrates subjected to site-selective editing in vivo, in combination with microarray analyses of the captured RNAs. We show that known single sites of A to I editing can be detected after IP using an antibody against the ADAR2 protein. The RNA substrates were verified by RT–PCR, RNase protection and microarray. Using this method it is possible to uniquely identify novel single sites of selective A to I editing.  相似文献   

8.
RNA编辑是发生于双链RNA(dsRNA)上的一类重要转录后反应,可通过碱基插入、缺失或替换的方式改变RNA的核苷酸序列从而丰富转录组和蛋白质组水平的多样性。哺乳动物中最常见的RNA编辑是ADAR家族介导的腺嘌呤-次黄嘌呤编辑(A-to-I),其在碱基配对过程中被识别为鸟嘌呤。人类转录组中已报道了数百万个A-to-I编辑位点,而ADAR1是最主要的催化酶。在血液肿瘤中,ADAR1的失调将直接影响基因编码区、非编码区和miRNA前体的A-to-I编辑状态,从而导致一系列分子事件改变,如蛋白质编码序列改变、内含子滞留、选择性剪接和miRNA生物发生受抑制。近年来研究发现,异常的RNA编辑导致分子调控网络的紊乱,促进细胞增殖、凋亡受阻和细胞耐药,是白血病干细胞(LSCs)生成和干性维持的重要因素。目前,以RNA编辑为靶点的新药(如rebecsinib)已经在动物实验中取得良好疗效。有别于传统抗肿瘤药,表观遗传抗肿瘤药有望克服血液肿瘤的耐药、复发难题,为患者提供全新治疗选择。本综述总结了ADAR1介导的RNA编辑在血液肿瘤中的作用机制及其生物学功能研究的进展,并探讨了其在药物研发和临床应用中的价值。  相似文献   

9.
Adenosine to inosine (A-to-I) RNA editing is the most abundant editing event in animals. It converts adenosine to inosine in double-stranded RNA regions through the action of the adenosine deaminase acting on RNA (ADAR) proteins. Editing of pre-mRNA coding regions can alter the protein codon and increase functional diversity. However, most of the A-to-I editing sites occur in the non-coding regions of pre-mRNA or mRNA and non-coding RNAs. Untranslated regions (UTRs) and introns are located in pre-mRNA non-coding regions, thus A-to-I editing can influence gene expression by nuclear retention, degradation, alternative splicing, and translation regulation. Non-coding RNAs such as microRNA (miRNA), small interfering RNA (siRNA) and long non-coding RNA (lncRNA) are related to pre-mRNA splicing, translation, and gene regulation. A-to-I editing could therefore affect the stability, biogenesis, and target recognition of non-coding RNAs. Finally, it may influence the function of non-coding RNAs, resulting in regulation of gene expression. This review focuses on the function of ADAR-mediated RNA editing on mRNA non-coding regions (UTRs and introns) and non-coding RNAs (miRNA, siRNA, and lncRNA).  相似文献   

10.
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR.  相似文献   

11.
Recognition of double-stranded RNA by proteins and small molecules   总被引:7,自引:0,他引:7  
Molecular recognition of double-stranded RNA (dsRNA) is a key event for numerous biological pathways including the trafficking, editing, and maturation of cellular RNA, the interferon antiviral response, and RNA interference. Over the past several years, our laboratory has studied proteins and small molecules that bind dsRNA with the goal of understanding and controlling the binding selectivity. In this review, we discuss members of the dsRBM class of proteins that bind dsRNA. The dsRBM is an approximately 70 amino acid sequence motif found in a variety of dsRNA-binding proteins. Recent results have led to a new appreciation of the ability of these proteins to bind selectivity to certain sites on dsRNA. This property is discussed in light of the RNA selectivity observed in the function of two proteins that contain dsRBMs, the RNA-dependent protein kinase (PKR) and an adenosine deaminase that acts on dsRNA (ADAR2). In addition, we introduce peptide-acridine conjugates (PACs), small molecules designed to control dsRBM-RNA interactions. These intercalating molecules bear variable peptide appendages at opposite edges of an acridine heterocycle. This design imparts the potential to exploit differences in groove characteristics and/or base-pair dynamics at binding sites to achieve selective binding.  相似文献   

12.
13.
14.
The interferon-inducible double-stranded RNA (dsRNA)-activated protein kinase PKR is regulated by dsRNAs that interact with the two dsRNA-binding motifs (dsRBMs) in its N terminus. The dsRBM is a conserved protein motif found in many proteins from most organisms. In this study, we investigated the biochemical functions and cytological activities of the two PKR dsRBMs (dsRBM1 and dsRBM2) and the cooperation between them. We found that dsRBM1 has a higher affinity for binding to dsRNA than dsRBM2. In addition, dsRBM1 has RNA-annealing activity that is not displayed by dsRBM2. Both dsRBMs have an intrinsic ability to dimerize (dsRBM2) or multimerize (dsRBM1). Binding to dsRNA inhibits oligomerization of dsRBM1 but not dsRBM2 and strongly inhibits the dimerization of the intact PKR N terminus (p20) containing both dsRBMs. dsRBM1, like p20, activates reporter gene expression in transfection assays, and it plays a determinative role in localizing PKR to the nucleolus and cytoplasm of the cell. Thus, dsRBM2 has weak or no activity in dsRNA binding, stimulation of gene expression, and PKR localization, but it strongly enhances these functions of dsRBM1 when contained in p20. However, dsRBM2 does not enhance the annealing activity of dsRBM1. This study shows that the dsRBMs of PKR possess distinct properties and that some, but not all, of the functions of the enzyme depend on cooperation between the two motifs.  相似文献   

15.
Adenosine-to-inosine modification of RNA molecules (A-to-I RNA editing) is an important mechanism that increases transciptome diversity. It occurs when a genomically encoded adenosine (A) is converted to an inosine (I) by ADAR proteins. Sequencing reactions read inosine as guanosine (G); therefore, current methods to detect A-to-I editing sites align RNA sequences to their corresponding DNA regions and identify A-to-G mismatches. However, such methods perform poorly on RNAs that underwent extensive editing ("ultra"-editing), as the large number of mismatches obscures the genomic origin of these RNAs. Therefore, only a few anecdotal ultra-edited RNAs have been discovered so far. Here we introduce and apply a novel computational method to identify ultra-edited RNAs. We detected 760 ESTs containing 15,646 editing sites (more than 20 sites per EST, on average), of which 13,668 are novel. Ultra-edited RNAs exhibit the known sequence motif of ADARs and tend to localize in sense strand Alu elements. Compared to sites of mild editing, ultra-editing occurs primarily in Alu-rich regions, where potential base pairing with neighboring, inverted Alus creates particularly long double-stranded RNA structures. Ultra-editing sites are underrepresented in old Alu subfamilies, tend to be non-conserved, and avoid exons, suggesting that ultra-editing is usually deleterious. A possible biological function of ultra-editing could be mediated by non-canonical splicing and cleavage of the RNA near the editing sites.  相似文献   

16.
Spanggord RJ  Vuyisich M  Beal PA 《Biochemistry》2002,41(14):4511-4520
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates and inhibits the function of the translation initiation factor eIF-2. PKR has a double-stranded RNA-binding domain (dsRBD) composed of two copies of the dsRNA binding motif (dsRBM). PKR's dsRBD is involved in the regulation of the enzyme as dsRNAs of cellular and viral origins bind to the dsRBD, leading to either activation or inhibition of PKR's kinase activity. In this study, we site-specifically modified each of the dsRBMs of PKR's dsRBD with the hydroxyl radical generator EDTA small middle dotFe and performed cleavage studies on kinase-activating and kinase-inhibiting RNAs. These experiments led to the identification of binding sites for the individual dsRBMs on various RNA ligands including a viral activating RNA (TAR from HIV-1), a viral inhibiting RNA (VA(I) RNA from adenovirus), an aptamer RNA that activates PKR, and a small synthetic inhibiting RNA. These results indicate that some RNAs interact only with one dsRBM, while others can bind both dsRBMs of PKR. In addition, EDTA small middle dotFe modification coupled with site-directed mutagenesis was used to assess the extent of cooperativity in the binding of the two dsRBMs. These experiments support the hypothesis that simultaneous binding of both dsRBMs of PKR occurs on kinase activating RNA ligands.  相似文献   

17.
ADAR2 is a double-stranded RNA-specific adenosine deaminase involved in the editing of mammalian RNAs by the site-specific conversion of adenosine to inosine. To examine the physiologic consequences resulting from ADAR2 misexpression, we have generated mutant mice expressing either wild-type or deaminase-deficient ADAR2 transgenes under the control of the human cytomegalovirus promoter. Transgenic mice expressing either wild-type or inactive ADAR2 isoforms demonstrated adult onset obesity characterized by hyperglycemia, hyperleptinemia, and increased adiposity. Paired feeding analysis revealed that mutant mice on caloric restriction had a growth rate and body composition indistinguishable from wild-type littermates, indicating that the observed obesity predominantly results from hyperphagia rather than a metabolic derangement. The observation that expression of catalytically inactive ADAR2 also is capable of producing an obese phenotype in mutant animals suggests that ADAR2 may possess additional biological activities beyond those required for the site-selective deamination of adenosine or may interfere with the actions of other double-stranded RNA-specific binding proteins in the cell.  相似文献   

18.
A-to-I editing challenger or ally to the microRNA process   总被引:4,自引:0,他引:4  
Ohman M 《Biochimie》2007,89(10):1171-1176
  相似文献   

19.
The double-stranded RNA-binding motif (dsRBM) is a widely distributed motif frequently found within proteins with sequence non-specific RNA duplex-binding activity. In addition to the binding of double-stranded RNA, some dsRBMs also participate in complex formation via protein–protein interactions. Interestingly, a lot of proteins containing multiple dsRBMs have only some of their dsRBMs with the expected RNA duplex-binding competency proven, while the functions of the other dsRBMs remain unknown. We show here that the dsRBM1 of RNA helicase A (RHA) can cooperate with a C-terminal domain of proline-rich content to gain novel nucleic acid-binding activities. This integrated nucleic acid-binding module is capable of associating with the consensus sequences of the constitutive transport element (CTE) RNA of type D retrovirus against RNA duplex competitors. Remarkably, binding activity for double-stranded DNA corresponding to the consensus sequences of the cyclic-AMP responsive element also resides within this composite nucleic acid binder. It thus suggests that the dsRBM fold can be used as a platform for the building of a ligand binding module capable of non-RNA macromolecule binding with an accessory sequence, and functional assessment for a newly identified protein containing dsRBM fold should be more cautious.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号