首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同生态习性热带雨林树种的幼苗对光能的利用与耗散   总被引:10,自引:2,他引:8  
研究了生长于100%、25%和8%光照条件下的热带雨林先锋树种团花、演替顶极阶段的冠层树种绒毛番龙眼和中下层树种滇南风吹楠幼苗的光合能力及光能分配特性对光强的响应。与绒毛番龙眼和滇南风吹楠相比,团花具有较高的最大光合速率和最大电子传递速率,从光能分配对光强的响应曲线可以看出,随着光强的增加,3个树种幼苗叶片吸收的光能分配到光化学反应的比例减少,分配到热耗散的比例增加,光能在光化学反应与热耗散之间的分配呈显著负相关,与其它两个种相比,100%光下的团花幼苗将较多的光能分配到光化学反应中,热耗散较弱且未达到饱和。过剩光能少,没有引起长期光抑制,绒毛番龙眼和滇南风吹楠将叶片吸收的较多光能分配到热耗散中,但生长于100%光下的幼苗过剩光能仍然较多,导致幼苗遭受长期光抑制,结果表明,不同生态习性热带雨林树种幼苗更新对光环境的要求与这些幼苗对光能的利用和耗散特性密切相关。  相似文献   

2.
Preparations have been obtained from rabbit reticulocyte elongation factor 1 (EF-1) that exhibit activities analogous to the heat stable and heat labile factors, EF-Ts and EF-Tu, of Escherichia coli. The heat stable fraction, prepared by heating EF-1 in the presence of GTP, has virtually no activity in poly (U)-directed polyphenylalanine synthesis. The fraction exhibiting activity similar to bacterial EF-Tu is obtained by the interaction of EF-1 with GTP and phenylalanyl-tRNA followed by passage of the solution through a nitrocellulose filter. The filtrate, which alone has low activity in polyphenylalanine synthesis, when combined with the heat stable fraction gives high activity suggesting that the heat stable preparation catalyzes recycling of the filtrate component.  相似文献   

3.
Summary Selective constraints on DNA sequence change were incorporated into a model of DNA divergence by restricting substitutions to a subset of nucleotide positions. A simple model showed that both mutation rate and the fraction of nucleotide positions free to vary are strong determinants of DNA divergence over time.When divergence between two species approaches the fraction of positions free to vary, standard methods that correct for multiple mutations yield severe underestimates of the number of substitutions per site. A modified method appropriate for use with DNA sequence, restriction site, or thermal renaturation data is derived taking this fraction into account. The model also showed that the ratio of divergence in two gene classes (e.g., nuclear and mitochondrial) may vary widely over time even if the ratio of mutation rates remains constant.DNA sequence divergence data are used increasingly to detect differences in rates of molecular evolution. Often, variation in divergence rate is assumed to represent variation in mutation rate. The present model suggests that differing divergence rates among comparisons (either among gene classes or taxa) should be interpreted cautiously. Differences in the fraction of nucleotide positions free to vary can serve as an important alternative hypothesis to explain differences in DNA divergence rates.  相似文献   

4.
A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.  相似文献   

5.
H Ng 《Applied microbiology》1982,43(5):1016-1019
The effects of various growth conditions on the heat resistance of Arizona bacteria grown in a continuous-culture device (chemostat) were studied. Using either glucose, NH4Cl, NaH2PO4, or MgCl2 as the rate-limiting nutrient, it was found that the heat resistance, in all cases depended on the dilution rate and, hence, growth rate of the culture. Cells grown at high dilution rates were less heat resistant than those grown at low dilution rates. If, however, the dilution rate was maintained at a constant rate, the higher the growth temperature, the more heat resistant were the cells. Also at any given dilution rate, the cells were most heat resistant when grown at a near neutral pH. Most survival curves were biphasic in shape, indicating the presence in the population of two fractions of cells, one fraction being more resistant than the other. The size of the more heat-resistant fraction varied from almost 100% in very slow-growing cultures to practically 0% in cultures grown at a dilution rate of 0.67 h-1.  相似文献   

6.
Nuclear matrix prepared from mouse leukemia L5178Y cells contained not only the two common actin isomers, beta and gamma actins, but also two additional acidic species of actin (pI 5.1 and 5.3). An anti-actin antibody recognized these acidic species as well as beta and gamma actins on a nitrocellulose filter following western blotting of two-dimensional electrophoresis. These acidic species were co-purified with beta and gamma actins using DNase I-Sepharose affinity chromatography on the nuclear matrix. Limited digestion of the acidic actin with protease V8 or trypsin gave very similar peptide fragments as did digestion of beta and gamma actins. These acidic actins were found to be distributed in the nuclear fraction, but were scarcely detectable in the cytoplasmic fraction. One of the acidic actins (pI 5.3) was found in all subnuclear fractions (DNase extract, high-salt extract and nuclear matrix), while the other species, the most acidic actin (pI 5.1), was localized predominantly in the nuclear matrix.  相似文献   

7.
The origin of the anomalous mole fraction effect (AMFE) in calcium channels is explored with a model of the ryanodine receptor. This model predicted and experiments verified new AMFEs in the cardiac isoform. In mole fraction experiments, conductance is measured in mixtures of ion species X and Y as their relative amounts (mole fractions) vary. This curve can have a minimum (an AMFE). The traditional interpretation of the AMFE is that multiple interacting ions move through the pore in a single file. Mole fraction curves without minima (no AMFEs) are generally interpreted as X displacing Y from the pore in a proportion larger than its bath mole fraction (preferential selectivity). We find that the AMFE is also caused by preferential selectivity of X over Y, if X and Y have similar conductances. This is a prediction applicable to any channel and provides a fundamentally different explanation of the AMFE that does not require single filing or multiple occupancy: preferential selectivity causes the resistances to current flow in the baths, channel vestibules, and selectivity filter to change differently with mole fraction, and produce the AMFE.  相似文献   

8.
为了更好地理解放牧对草原生态系统物种多度分布格局的影响, 以及常见种和稀有种对维持群落多样性的作用, 以内蒙古典型草原为研究对象, 基于长期放牧控制实验平台(包括7个载畜率水平(0、1.5、3.0、4.5、6.0、7.5、9.0 sheep·hm-2)和两种地形系统(平地和坡地)), 研究了群落内全部物种、常见种和稀有种的丰富度和多度对放牧强度的响应规律, 并选取对数正态模型、对数级数模型和幂分割模型, 对物种多度数据进行拟合。结果表明: 1)平地系统中, 物种丰富度和多度在低放牧强度下(1.5、3.0 sheep·hm-2)增加, 而在中、高度放牧强度下(4.5-9.0 sheep·hm-2)降低, 全部物种的多度分布在大多数放牧强度下符合幂分割模型, 在高放牧强度下也符合对数正态模型; 坡地系统中, 物种丰富度和多度随着放牧强度增加而显著降低, 全部物种的多度分布在各个放牧强度下, 均符合幂分割模型和对数正态模型。2)随着放牧强度增加, 常见种的多度响应趋势与全部物种的响应趋势一致, 其多度分布均符合幂分割模型和对数正态模型; 稀有种的丰富度响应趋势与全部物种的响应趋势一致, 其多度分布符合幂分割模型, 同时也部分符合对数正态和对数级数模型。总之, 适宜的载畜率有利于生物多样性和初级生产力的提高, 平地系统中物种多度的响应在一定程度上支持放牧优化假说; 而坡地系统中不同物种多度的响应差异说明: 确定最佳载畜率时, 还需要考虑地形因素的影响。此外, 模型的拟合结果表明: 生态位分化机制对内蒙古典型草原物种多度分布起着主要作用, 常见种和稀有种通过不同的响应方式共同维持着草原生态系统的物种多样性。  相似文献   

9.
Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.  相似文献   

10.
Abstract. Seed germination characteristics were investigated in the most common Cistus species in Greece, namely C. incanus ssp. creticus and C. salvifolius. In addition to the soft seed subpopulation, both species produce a large fraction of hardcoated, water-impermeable seeds which can be softened and, thus, promoted to germinate by mechanical scarification and thermal pretreatment. Temperature and light control of seed germination are unimportant. In the ecological context of the Mediterranean ecosystems, the eventually advantageous, opportunistic strategy of germination is based on: (a) seed heterospermy (which allows the smaller, softcoated fraction to germinate promptly each year while the majority of the seeds, the hard ones, accumulate in the soil); (b) the seed population heterogeneity in relation to coat hardness (so that any heat conditions produced by fire induce the softening and germination of a certain seed fraction); (c) the notably low germination rate (which suppresses premature germination); (d) the wide, Mediterranean-type (relatively cool), temperature range of germination (while higher temperatures simply inhibit but do not induce any dormancy); and (c) the apparent lack of photo-sensitivity (enabling germination under every light regime). In non-fire years, the temporal distribution of field germination and seedling appearance might be partly determined by the seed dispersal strategy of the individual Cistus species. Nevertheless, the post-fire regeneration response is manifested in the form of a huge wave of germination (of practically all seeds softened by the fire heat), shortly after the onset of the rainy season.  相似文献   

11.
Summary A model predicting optimal timing of growth and reproduction in perennial species with indeterminate growth living in a seasonal environment, is presented. According to the model, the optimal fraction of growing season devoted to growth decreases with increasing individual age and size, which leads to S-shaped growth curves. Winter mortality seems to be a crucial factor affecting the timing of growth and reproduction, under the same function describing the dependence of growth rate and reproductive rate on body size. When winter mortality is heavy, it is often optimal to start reproducing in the first year, and to devote a large proportion of the subsequent years to reproduction, thus leading to small adult body sizes.The model has been applied to two species of mollusc and one species of fish. The model predictions fit well to the field data for these three species.  相似文献   

12.
A simple and reliable method is described which allows determination of virus inactivation rates during sludge treatment processes in situ. Bacteriophage f2 was adsorbed onto an electropositive membrane filter which was then sandwiched between two polycarbonate membranes with pores smaller than the virus diameter. The resulting sandwich was fixed in an open filter holder, and several such devices were connected before being exposed in sludge-digesting tanks. The device described prevented uncontrolled virus escape, but allowed direct contact of the various inactivating or stabilizing substances present in the environment tested with the virus adsorbed to the carrier membrane. After exposure to an environment, the surviving fraction of virus was eluted from the inner filter and determined by plaque counting. By using polycarbonate membranes without pores for sandwiching, the influence of temperature alone on virus inactivation could be measured. Thermophilic fermentation at 60 degrees C and at 65 kPa pressure led to a bacteriophage f2 titer reduction of 3.5 log10 units per h, whereas during thermophilic digestion at 54.5 degrees C titers decreased 1.2 log10 units per h. During mesophilic digestion an inactivation rate of only 0.04 log10 units per h was observed. Under these latter conditions, temperature had only a minor effect (19%) on virus inactivation, whereas at 54.5 degrees C during thermophilic digestion heat accounted for 32% of the total inactivation, and during thermophilic fermentation at 60 degrees C temperature and pressure were 100% responsible for virus denaturation.  相似文献   

13.
A simple and reliable method is described which allows determination of virus inactivation rates during sludge treatment processes in situ. Bacteriophage f2 was adsorbed onto an electropositive membrane filter which was then sandwiched between two polycarbonate membranes with pores smaller than the virus diameter. The resulting sandwich was fixed in an open filter holder, and several such devices were connected before being exposed in sludge-digesting tanks. The device described prevented uncontrolled virus escape, but allowed direct contact of the various inactivating or stabilizing substances present in the environment tested with the virus adsorbed to the carrier membrane. After exposure to an environment, the surviving fraction of virus was eluted from the inner filter and determined by plaque counting. By using polycarbonate membranes without pores for sandwiching, the influence of temperature alone on virus inactivation could be measured. Thermophilic fermentation at 60 degrees C and at 65 kPa pressure led to a bacteriophage f2 titer reduction of 3.5 log10 units per h, whereas during thermophilic digestion at 54.5 degrees C titers decreased 1.2 log10 units per h. During mesophilic digestion an inactivation rate of only 0.04 log10 units per h was observed. Under these latter conditions, temperature had only a minor effect (19%) on virus inactivation, whereas at 54.5 degrees C during thermophilic digestion heat accounted for 32% of the total inactivation, and during thermophilic fermentation at 60 degrees C temperature and pressure were 100% responsible for virus denaturation.  相似文献   

14.
* BACKGROUNDS AND AIMS: Thermogenesis in reproductive organs is known from several plant families, including the Araceae. A study was made of the relationship between temperature increase and spadix size in the subfamily Aroideae in order to determine whether the quantitative variation of heat production among species and inflorescences of different sizes follows a physical law of heat transfer. * METHODS: Spadix temperature was measured in 18 species from eight genera of tropical Araceae from the basal clade of Aroideae, both in French Guiana and in the glasshouses of the Montreal Botanical Garden. * KEY RESULTS: A significant logarithmic relationship was found between the volume of the thermogenic spadix zone and the maximum temperature difference between the spadix and ambient air. Four heat transfer models were applied to the data (conductive heat transfer alone, convective heat transfer alone, radiative heat transfer alone, and convective and radiative heat transfers) to test if physical (geometric and thermic) constraints apply. Which heat transfer model was the most probable was determined by using the criterion of a classical minimization process represented by the least-squares method. Two heat transfer models appeared to fit the data well and were equivalent: conductive heat transfer alone, and convective plus radiative heat transfers. * CONCLUSIONS: The increase in the temperature difference between the spadix and ambient air appears to be physically constrained and corresponds to the value of a thermal model of heat conduction in an insulated cylinder with an internal heat source. In the models, a heat metabolic rate of 29.5 mW g(-1) was used, which was an acceptable value for an overall metabolic heat rate in aroid inflorescences.  相似文献   

15.
Models of mass and energy exchanges between the biosphere and the atmosphere generally contain a nonlinear dependence between fluxes and model parameters, and thus estimation of these parameters from measurements in a heterogeneous landscape depends on the scale of the observations. The scale‐dependence of a typical surface‐exchange model (the CSIRO Biospheric Model, CBM) is examined using the diurnal variation of hourly fluxes of CO2, latent heat, sensible heat and soil heat. The fluxes were measured using micrometeorological techniques over six sites in a grazing/pasture system in SE Australia during a period of three weeks in 1995. Nonlinear parameter inversion was used to determine model parameters. Analysis of the covariance of the estimates of the parameters and the unexplained residuals of the model showed that a maximum of three or four parameters could be determined independently from the observations for all six sites. Estimates of a key model parameter, jmax, the mean of maximum potential electron transport rate of all leaves within the canopy, was best determined by the measurements of net CO2 flux at all sites examined. Measurements of ground heat flux provide little information about any of the model parameters in CBM. Because of nonlinearities in the surface exchange model, calculated fluxes will be in error if parameters for the component vegetation types are simply averaged in proportion to their areal fraction. The magnitude of these errors was examined for CBM using a hypothetical land surface consisting of two surface types, each with different parameter values. Predictions of net CO2, latent heat and ground heat fluxes using a linear combination of model parameters for the two surface types were quite similar with those found using optimal estimates of the parameters for the landscape, but were significantly poorer for sensible heat fluxes.  相似文献   

16.
Seedling growth strategies in Bauhinia species: comparing lianas and trees   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. METHODS: Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. KEY RESULTS: The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). CONCLUSIONS: It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.  相似文献   

17.
The thermodynamic parameters characterizing protein folding can be obtained directly using differential scanning calorimetry (DSC). They are meaningful only for reversible unfolding at equilibrium, which holds for small globular proteins; however, the unfolding or denaturation of most large, multidomain or multisubunit proteins is either partially or totally irreversible. The simplest kinetic model describing partially irreversible denaturation requires three states: Formula [see text] We obtain numerical solutions for N, U, and D as a function of temperature for this model and derive profiles of excess specific heat (Cp) in terms of the reduced variables v/ki and k1/k3, where v is the scan rate. The three-state model reduces to the two-state reversible or irreversible models for very large or very small values of k1/k3, respectively. The apparent transition temperature (Tapp) is always reduced by the irreversible step (U-->D). For all values of k3, Tapp is independent of v/k1 at sufficiently slow scan rates, even when denaturation is highly irreversible, but increases identically for all models at fast scan rates in which case the excess specific heat profile is determined by the rate of unfolding. Accurate values of delta H and delta S can be obtained for the reversible step only when k1 is more than 2000-50,000 times greater than k3. In principle, approximate values for the ratio k1/k3 can be obtained from plots of fraction unfolded vs fraction irreversibly denatured as a function of temperature; however, the fraction irreversibly denatured is difficult to measure accurately by DSC alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two fractions of substrate in microcrystalline cellulose which differ in their adsorption capacities for the cellulases and their susceptibility to enzymatic attack have been identified. On the basis of a two-substrate hypothesis, mathematical models to describe enzyme adsorption and the kinetics of hydrolysis have been derived. A new nonequilibrium approach was chosen to predict cellulase-cellulose adsorption. A maximum binding capacity of 76 mg protein per gram substrate and a half-maximum saturation constant of 26 filter paper units (FPU) per gram substrate have been calculated, and a linear relationship of hydrolysis rate vs. adsorbed protein has been found. The fraction of substrate more easily hydrolyzed, as calculated from hydrolysis data, represents 19% of the total effective substrate concentration. This fraction is only slightly different from that of other celluloses and has been estimated to be 27% and 30% for NaOH- and H(3)PO(4)-swollen cellulose, respectively. The effective substrate concentration is equal to the maximum amount of the substrate which can be converted during exhaustive hydrolysis. This in turn is determined by the overall degradability of the substrate by the cellulases (85-90% for microcrystalline cellulose) and by the cellobiose concentration during hydrolysis. The kinetic model is based on a summation of two integrated first-order reactions with respect to the effective substrate concentration. Furthermore, it includes the principal factors influencing the reaction rates: the ratio of filter paper and beta-glucosidase units per gram substrate and the initial substrate concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
Heenan CB  Seymour RS 《PloS one》2012,7(2):e32252
Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.  相似文献   

20.
One of the requirements for enhanced productivity by the animal culture systems used in biotechnology is the direct assessment of the metabolic rate by on-line biosensors. Based on the fact that cell growth is associated with an enthalpy change, it is shown that the specific heat flow rate is stoichiometrically related to the net specific rates of substrates, products, and indeed to specific growth rate, and therefore a direct reflection of metabolic rate. Heat flow rate measured by conduction calorimetry has a technical advantage over estimates for many material flows which require assays at a minimum of two discrete times to give the rate. In order to make heat flow rate specific to the amount of the living cellular system, it would be advantageous to divide it by viable biomass. This requirement has been fulfilled by combining a continuous flow microcalorimeter ex situ with a dielectric spectroscope in situ, the latter measuring the viable cell mass volume fraction. The quality of the resulting biosensor for specific heat flow rate was illustrated using batch cultures of Chinese hamster ovary cells (CHO 320) producing recombinant human interferon-gamma (IFN-gamma) during growth in a stirred tank bioreactor under fully aerobic conditions. The measuring scatter of the probe was decreased significantly by applying the moving average technique to the two participant signals. It was demonstrated that the total metabolic rate of the cells, as indicated by the specific heat flow rate sensor, decreased with increasing time in batch culture, coincident with the decline in the two major substrates, glucose and glutamine, and the accumulation of the by-products, ammonia and lactate. Furthermore, the specific heat flow rate was an earlier indicator of substrate depletion than the flow rate alone. The calorimetric-respirometric ratio showed the intensive participation of anaerobic processes during growth and the related IFN-gamma production. Specific heat flow rate was monotonically related to specific cell growth rate and associated with specific IFN-gamma production. Specific heat flow rate is potentially a valid control variable for the growth of genetically engineered cell lines producing target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号