首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Marginal zone (MZ), follicular (FO), and B1 B cells form the long-lived naive B cell compartment. To identify surface markers that define MZ B cells in mice, we generated a panel of mAbs reactive with MZ but not FO B cells. One of these mAbs, MZ3, was found to recognize the tetraspanin CD9. CD9 expression not only distinguishes MZ B cells from FO B cells but also divided peritoneal cavity B1 cells into smaller subsets. After short-term in vitro stimulation with various mitogens, FO B cells failed to induce CD9 protein, while MZ B cells up-regulated the level of CD9 protein. However, after prolonged culture of FO B cells with LPS, surface CD9 was induced, together with syndecan 1, indicative of plasma cell differentiation. Following immunization with a T-independent-2 Ag, R36A, or a T-dependent Ag, SRBC, we found that CD9 is not expressed by germinal center B cells but is eventually expressed on plasma cells in response to both T-independent-2 and T-dependent Ags. Collectively, these results suggest that MZ B cells and B1 cell subsets are the immediate precursors of plasma cells in the primary response and that CD9 is acquired by T-dependent plasma cells.  相似文献   

2.
The early involvement of marginal zone (MZ) B lymphocytes in T-independent immune responses is well established. In this study we compared the abilities of MZ and follicular (FO) B cells to collaborate with T cells. After immunization with soluble hen egg lysozyme, both MZ and FO B cells captured Ag and migrated to T cell areas in the response to hen egg lysozyme. MZ B cells were far superior to FO B cells in inducing CD4+ T cell expansion both in vitro and in vivo. MZ, but not FO, B cells, after interaction with T cells, differentiated into plasma cells, and in addition they stimulated Ag-specific CD4+ T cells to produce high levels of Th1-like cytokines upon primary stimulation in vitro. These results indicate that MZ B cells rapidly and effectively capture soluble Ag and activate CD4+ T cells to become effector T cells. The enhanced capacity of MZ B cells to prime T cells in this study appeared to be intrinsic to MZ B cells, as both MZ and FO B cell populations express an identical Ag receptor.  相似文献   

3.
Marginal zone (MZ) B cells differ from follicular (FO) B cells in their functional, phenotypic and localization properties. It is still unclear whether B cells from the MZ compartment also have distinct or biased BCR specificities, recognizing only a limited number of conserved antigenic structures. To address the complexity of the immune response mounted by marginal zone B cells, we compared the antibody repertoire of murine MZ and FO B cells induced by immunization with two different virus-like particles (VLPs). Antibody sequences isolated from sorted VLP-specific MZ and FO B cells were similar in heavy chain V, D and J gene segment usage. Sequence analysis of CDR3 regions of antibodies from MZ and FO B cells also revealed no consistent difference in N nucleotide additions or CDR3 length. In contrast, somatic hypermutations were reduced in CDR regions of antibodies from MZ B cells compared to those from FO B cells. These results indicate that the response of MZ B cells to VLPs is clonotypically heterogeneous and suggest that the MZ B cell compartment is capable of generating variable and diverse antibody responses.  相似文献   

4.
Mouse splenic marginal zone (MZ) B cells and B1 B cells enriched in the peritoneal cavity respond preferentially to T cell-independent Ags compared with follicular (FO)/B2 B cells. Despite the differential responses of B cell subsets to various stimuli, and despite the need for multiple stimuli to induce IgA class switching, the relative contribution of B cell subpopulations to IgA production is unknown. By culturing purified B cell populations, we find that MZ and peritoneal B1 cells switch more readily to IgA than do splenic FO or peritoneal B2 cells in BLyS/LPS/TGF-beta. Addition of IL-4, IL-5, and anti-IgD dextran to the cultures enhances IgA switching in FO/B2 and MZ B cells to a similar frequency, but this treatment suppresses IgA class switching in B1 cells. Thus, IgA switching differs among purified B cell subsets, suggesting that individual B cell populations could contribute differentially to IgA expression in vivo, depending on available stimuli.  相似文献   

5.
Marginal zone (MZ) B cells play an important role in the clearance of blood-borne bacterial infections via rapid T-independent IgM responses. We have previously demonstrated that MZ B cells respond rapidly and robustly to bacterial particulates. To determine the MZ-specific genes that are expressed to allow for this response, MZ and follicular (FO) B cells were sort purified and analyzed via DNA microarray analysis. We identified 181 genes that were significantly different between the two B cell populations. Ninety-nine genes were more highly expressed in MZ B cells while 82 genes were more highly expressed in FO B cells. To further understand the molecular mechanisms by which MZ B cells respond so rapidly to bacterial challenge, Id-positive and -negative MZ B cells were sort purified before (0 h) or after (1 h) i.v. immunization with heat-killed Streptococcus pneumoniae, R36A, and analyzed via DNA microarray analysis. We identified genes specifically up-regulated or down-regulated at 1 h following immunization in the Id-positive MZ B cells. These results give insight into the gene expression pattern in resting MZ vs FO B cells and the specific regulation of gene expression in Ag-specific MZ B cells following interaction with Ag.  相似文献   

6.
7.
Although IgG2a is the most potent Ab isotype in the host response to viral and bacterial infections, the regulation of class switch recombination to IgG2a in vivo is not yet well understood. Recognition of pathogen-associated molecular patterns by dendritic cells expressing TLRs, like TLR7, recognizing ssRNA, or TLR9, recognizing DNA rich in nonmethylated CG motifs (CpG), favors induction of Th1 responses. It is generally assumed that these Th1 responses are responsible for the TLR-mediated induction of IgG2a. Using virus-like particles loaded with CpGs, we show here that TLR9 ligands can directly stimulate B cells to undergo isotype switching to IgG2a. Unexpectedly, TLR9 expression in non-B cells did not affect isotype switching in the Ab response against virus-like particles. Thus, TLR9 can regulate isotype switching to IgG2a directly by interacting with B cells rather than indirectly by inducing Th1 responses.  相似文献   

8.
Blk was identified two decades ago as a B-cell-specific member of the Src family of tyrosine kinases. Recent studies, however, have discovered that Blk is expressed in many cell types outside of the B lineage, including early thymic precursors, interleukin-17-producing γδ T cells and pancreatic β-cells. In light of these recent discoveries, we performed a more comprehensive analysis of Blk expression patterns in hematopoietic cells and found that Blk is differentially expressed in mature B-cell subsets, with marginal zone (MZ) B cells expressing high levels, B1 B cells expressing intermediate-to-high levels and follicular (FO) B cells expressing low levels of Blk. To determine whether these differences in Blk expression levels reflected differential requirements for Blk in MZ, B1 and FO B-cell development, we analyzed the effects of reducing and eliminating Blk expression on B-cell development. We report that both Blk haploinsufficiency and Blk deficiency impaired the generation of MZ B cells. Moreover, although there were fewer MZ B cells in Blk(+/-) and Blk(-/-) mice as compared with Blk(+/+) mice, Blk-mutant MZ B cells were hyper-responsive to B-cell receptor stimulation, both in vitro and in vivo. Thus, this study has revealed a previously unappreciated role for Blk in the development and activation of MZ B cells.  相似文献   

9.
Invariant chain (Ii)-deficient mice exhibit profound B cell defects that have remained poorly understood, because they could not be simply explained by impaired Ag presentation. We found that Ii deficiency induced cell autonomous defects of two distinct B cell lineages. The life span of mature follicular (FO) B cells was reduced, accounting for their markedly decreased frequency, whereas, in contrast, marginal zone (MZ) B cells accumulated. Other Ii-expressing lineages such as B1 B cells and dendritic cells were unaffected. Surprisingly, the life span of FO B cells was fully corrected in Ii/I-Abeta doubly deficient mice, revealing that Ii-free I-Abeta chains alter FO B cell survival. In contrast, the accumulation of MZ B cells was controlled by a separate mechanism independent of I-Abeta. Interestingly, in Ii-deficient mice lacking FO B cells, the MZ B cells invaded the FO zone, suggesting that intact follicules contribute to the retention of B cells in the MZ. These findings reveal unexpected consequences of Ii deficiency on the development and organization of B cell follicles.  相似文献   

10.
In this study we show that BCR affinity and subset identity make unique contributions to anergy. Analysis of anti-Smith (Sm) B cells of different affinities indicates that increasing affinity improves anergy's effectiveness while paradoxically increasing the likelihood of marginal zone (MZ) and B-1 B cell differentiation rather than just follicular (FO) B cell differentiation. Subset identity in turn determines the affinity threshold and mechanism of anergy. Subset-specific affinity thresholds for anergy induction allow discordant regulation of low-affinity anti-Sm FO and MZ B cells and could account for the higher frequency of autoreactive MZ B cells than that of FO B cells in normal mice. The mechanism of anergy changes during differentiation and differs between subsets. This is strikingly illustrated by the observation that blockade of BCR-mediated activation of FO and MZ B cells occurs at different levels in the signaling cascade. Thus, attributes unique to B cells of each subset integrate with signals from the BCR to determine the effectiveness, affinity threshold, and mechanism of anergy.  相似文献   

11.
12.
Although IgM serves as a first barrier to Ag spreading, the cellular and molecular mechanisms following B lymphocyte activation that lead to IgM secretion are not fully understood. By virtue of their anatomical location, marginal zone (MZ) B cells rapidly generate Ag-specific IgM in response to blood-borne pathogens and play an important role in the protection against these potentially harmful Ags. In this study, we have explored the contribution of TLR agonists to MZ B cell activation and mobilization as well as their ability to promote primary IgM responses in a mouse model. We demonstrate that diverse TLR agonists stimulate MZ B cells to become activated and leave the MZ through pathways that are differentially dependent on MyD88 and IFN-alphabeta receptor signaling. Furthermore, in vivo stimulation of MZ B cells with TLR agonists led to a reduction in the expression of the sphingosine-1-phosphate (S1P) receptors expressed by MZ B cells and/or increased CD69 cell surface levels. Importantly, as adjuvants for a T cell-dependent protein Ag, TLR agonists were found to accelerate the kinetics but not magnitude of the Ag-specific IgM response. Together, these data demonstrate that in vivo TLR agonist treatment enhances the early production of Ag-specific IgM and activates MZ B cells to promote their relocation.  相似文献   

13.
Antigen receptor proximal signaling in splenic B-2 cell subsets   总被引:3,自引:0,他引:3  
Splenic marginal zone (MZ) and follicular mantle (FO) B cells differ in their responses to stimuli in vitro and in vivo. We have previously shown that MZ cells exhibit greater calcium responses after ligation of membrane IgM (mIgM). We have now investigated the molecular mechanism underlying the difference in calcium responses following ligation of mIgM and studied the response to total B cell receptor ligation in these two subsets. We compared key cellular proteins involved in calcium signaling in MZ and FO cells. Tyrosine phosphorylation and activity of phospholipase C-gamma 2 and Syk protein tyrosine kinase were significantly higher in MZ cells than in FO cells after mIgM engagement, providing a likely explanation for our previous findings. Tyrosine phosphorylation of CD22 and expression of Src homology 2-containing inositol phosphatase and Src homology 2-containing protein tyrosine phosphatase-1 were also higher in the MZ cells. Expression and tyrosine phosphorylation of Btk, BLNK, Vav, or phosphatidylinositol 3-kinase were equivalent. In contrast, stimulation with anti-kappa induced equivalent increases in calcium and activation of Syk in the two subsets. These signals were also equivalent in cells from IgM transgenic, J(H) knockout mice, which have equivalent levels of IgM in both subsets. With total spleen B cells, Btk was maximally phosphorylated at a lower concentration of anti-kappa than Syk. Thus, calcium signaling in the subsets of mature B cells reflects the amount of Ig ligated more than the isotype or the subset and this correlates with the relative tyrosine phosphorylation of Syk.  相似文献   

14.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

15.
Homeostasis of peripheral B cell subsets is disturbed during chronic hepatitis C virus (HCV) infection, leading to the occurrence of autoimmunity and B cell lymphoproliferation. However, mechanisms by which HCV causes lymphoproliferation remain controversial. We report in this article on the elevated number of clonal CD21(-/low)IgM(+)CD27(+) marginal zone (MZ)-like B cells, which correlates with autoimmunity and lymphoproliferation in HCV patients. We found an increase in autoreactive BCRs using V(H)1-69 and V(H)4-34 genes in CD21(-/low) MZ B cells. CD21(-/low) MZ B cells showed impaired calcium-mediated signaling, did not upregulate activation markers, and did not proliferate in response to BCR triggering. CD21(-/low) MZ B cells also were prone to dying faster than their CD21(+) counterparts, suggesting that these B cells were anergic. CD21(-/low) MZ B cells, in contrast, remained responsive to TLR9 stimulation. Gene array analyses revealed the critical role of Early growth response 2 and Cbl-b in the induction of anergy. Therefore, HCV patients who display high frequencies of unresponsive CD21(-/low) MZ B cells are more susceptible to developing autoimmunity and/or lymphoproliferation. These cells remain in peripheral blood controlled by functional anergy instead of being eliminated, and chronic antigenic stimulation through TLR stimulation may create a favorable environment for breaking tolerance and activating these cells.  相似文献   

16.
Of a number of mAbs made by immunization with sort-purified marginal zone (MZ) B cells, one was shown to recognize the mouse scavenger receptor CD36. Although CD36 is expressed by most resting MZ B cells and not by follicular and B1 B cells, it is rapidly induced on follicular B cells in vitro following TLR and CD40 stimulation. In response to T-independent and T-dependent Ag challenge, we found that CD36 was expressed on IgM+ plasma cells, but down-regulated on isotype-switched plasma cells in vivo. Although development, localization, and phenotype of MZ B cells in CD36-/- mice appeared normal, there was a minor block in the transitional stages of mature B cell development. In both primary and secondary Ab responses to heat-killed Streptococcus pneumoniae (R36A strain), both phosphoryl choline (PC)-specific IgM and IgG levels in CD36-/- mice were slightly reduced compared with wild-type mice. In addition, mice deficient in both TLR2 and CD36 produced significantly reduced levels of anti-PC IgG titers than those of single gene-deficient mice, suggesting that they may cooperate in an anti-PC Ab response. Collectively, these results show that CD36 does not affect the development of B cells, but modulates both primary and secondary anti-PC Ab responses during S. pneumoniae infection similarly to TLR2.  相似文献   

17.
Naive B cells can alter the effector function of their Ig molecule by isotype switching, thereby allowing them to secrete not only IgM, but also the switched isotypes IgG, IgA, and IgE. Different isotypes are elicited in response to specific pathogens. Similarly, dysregulated production of switched isotypes underlies the development of various diseases, such as autoimmunity and immunodeficiency. Thus, it is important to characterize mediators controlling isotype switching, as well as their contribution to the overall B cell response. Isotype switching in human naive B cells can be induced by CD40L together with IL-4, IL-10, IL-13, and/or TGF-beta. Recently, IL-21 was identified as a switch factor for IgG1 and IgG3. However, the effect of IL-21 on switching to IgA, as well as the interplay between IL-21 and other switch factors, remains unknown. We found that IL-4 and IL-21 individually induced CD40L-stimulated human naive B cells to undergo switching to IgG, with IL-4 predominantly inducing IgG1(+) cells and IL-21 inducing IgG3. Culture of naive B cells with CD40L and IL-21, but not IL-4, also yielded IgA(+) cells. Combining IL-4 and IL-21 had divergent effects on isotype switching. Specifically, while IL-4 and IL-21 synergistically increased the generation of IgG1(+) cells from CD40L-stimulated B cells, IL-4 concomitantly abolished IL-21-induced switching to IgA. Our findings demonstrate the dynamic interplay between IL-4 and IL-21 in regulating the production of IgG subclasses and IgA, and suggest temporal roles for these cytokines in humoral immune responses to specific pathogens.  相似文献   

18.
Protective immunity against T cell independent (TI) antigens such as Streptococcus pneumoniae is characterized by antibody production of B cells induced by the combined activation of T cell independent type 1 and type 2 antigens in the absence of direct T cell help. In mice, the main players in TI immune responses have been well defined as marginal zone (MZ) B cells and B-1 cells. However, the existence of human equivalents to these B cell subsets and the nature of the human B cell compartment involved in the immune reaction remain elusive. We therefore analyzed the effect of a TI antigen on the B cell compartment through immunization of healthy individuals with the pneumococcal polysaccharide (PnPS)-based vaccine Pneumovax®23, and subsequent characterization of B cell subpopulations. Our data demonstrates a transient decrease of transitional and naïve B cells, with a concomitant increase of IgA+ but not IgM+ or IgG+ memory B cells and a predominant generation of PnPS-specific IgA+ producing plasma cells. No alterations could be detected in T cells, or proposed human B-1 and MZ B cell equivalents. Consistent with the idea of a TI immune response, antigen-specific memory responses could not be observed. Finally, BAFF, which is supposed to drive class switching to IgA, was unexpectedly found to be decreased in serum in response to Pneumovax®23. Our results demonstrate that a characteristic TI response induced by Pneumovax®23 is associated with distinct phenotypical and functional changes within the B cell compartment. Those modulations occur in the absence of any modulations of T cells and without the development of a specific memory response.  相似文献   

19.
The enzyme activation-induced deaminase (AID) deaminates deoxycytidine at the immunoglobulin genes, thereby initiating antibody affinity maturation and isotype class switching during immune responses. In contrast, off-target DNA damage caused by AID is oncogenic. Central to balancing immunity and cancer is AID regulation, including the mechanisms determining AID protein levels. We describe a specific functional interaction between AID and the Hsp40 DnaJa1, which provides insight into the function of both proteins. Although both major cytoplasmic type I Hsp40s, DnaJa1 and DnaJa2, are induced upon B-cell activation and interact with AID in vitro, only DnaJa1 overexpression increases AID levels and biological activity in cell lines. Conversely, DnaJa1, but not DnaJa2, depletion reduces AID levels, stability and isotype switching. In vivo, DnaJa1-deficient mice display compromised response to immunization, AID protein and isotype switching levels being reduced by half. Moreover, DnaJa1 farnesylation is required to maintain, and farnesyltransferase inhibition reduces, AID protein levels in B cells. Thus, DnaJa1 is a limiting factor that plays a non-redundant role in the functional stabilization of AID.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号