首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active oxygen species (AOS), especially hydrogen peroxide, play a critical role in the defence of plants against invading pathogens and in the hypersensitive response (HR). This is characterized by the induction of a massive production of AOS and the rapid appearance of necrotic lesions is considered as a programmed cell death (PCD) process during which a limited number of cells die at the site of infection. This work was aimed at investigating the mode of cell death observed in cultures of BY-2 tobacco cells exposed to H(2)O(2). It was shown that H(2)O(2) is able to induce various morphological cell death features in cultured tobacco BY-2 cells. The hallmarks of cell death observed with fluorescent and electron microscopy differed greatly with the amount of H(2)O(2) added to the cell culture. The appearance of nuclear fragmentation similar to 'apoptotic bodies' associated with a fragmentation of the nuclear DNA into small fragments appear for almost 18% of the cells treated with 12.5 mM H(2)O(2). The early stages of the induction of this PCD process consisted in cell shrinkage and chromatin condensation at the periphery of the nucleus. Above 50 mM, H(2)O(2) induces high necrotic cell death. These data suggest that H(2)O(2)-induced cell damage is associated with the induction of various cell death processes that could be involved differently in plant defence reactions.  相似文献   

2.
Plant resistance to pathogens requires the activation of complex metabolic pathways in the infected cells, aimed at recognizing pathogen presence and hindering its propagation within plant tissues. In spite of this both compatible and incompatible responses induce alterations in plant metabolism, only in the latter the plant is able to efficiently block pathogen penetration without suffering excessive damage. One of the most studied incompatible responses is based on the hypersensitive response (HR), in which cells surrounding the site of pathogen penetration switch on genes encoding for phytoalexin synthesis and other pathogenesis related proteins before activating programmed cell death (PCD). The production of reactive oxygen species (ROS) is a key event in HR. Several enzymatic systems have been proposed to be responsible for the oxidative burst characterizing HR. In this review, the involvement of antioxidant redox systems, in particular those related to ascorbate (ASC) and glutathione (GSH), in activating both compatible and incompatible plant responses is analysed. Increasing lines of evidence indicate that alterations in the levels and/or redox state of ASC and/or GSH, as well as in the activity of their redox enzymes, occur during the HR programme. These alterations do not seem to be a mere consequence of the oxidative stress induced by the massive ROS production, but they are induced as part of the transduction pathways triggering defence responses and PCD. The possibility that ASC and GSH systems are links in a redox signalling chain activating defence strategies is also discussed.  相似文献   

3.
4.
Duval I  Brochu V  Simard M  Beaulieu C  Beaudoin N 《Planta》2005,222(5):820-831
Thaxtomin A is the main phytotoxin produced by Streptomyces scabiei, the causative agent of common scab disease of potato. Pathogenicity of S. scabiei is dependent on the production of thaxtomin A which is required for the development of disease symptoms, such as growth inhibition and cell death. We investigated whether thaxtomin A-induced cell death was similar to the hypersensitive cell death that often occurs in response to specific pathogens or phytotoxins during the so-called hypersensitive response (HR). We demonstrated that thaxtomin A induced in Arabidopsis thaliana suspension-cultured cells a genetically controlled cell death that required active gene expression and de novo protein synthesis, and which involved fragmentation of nuclear DNA, a characteristic hallmark of apoptosis. The thaxtomin A-induced form of programmed cell death (PCD) was not a typical HR, since defence responses generally preceding or associated with the HR, such as rapid medium alkalization, oxidative burst and expression of defence-related genes PR1 and PDF1.2, were not observed in plant cells following addition of thaxtomin A. Thaxtomin A has been shown to inhibit cellulose biosynthesis (Scheible et al. in Plant Cell 15:1781, 2003). We showed that isoxaben, a specific inhibitor of cellulose biosynthesis, also induced in Arabidopsis cell suspensions a PCD similar to that induced by thaxtomin A. These data suggested that rapid changes in the plant cell wall composition and organization can induce PCD in plant cells. We discuss how rapid inhibition of cellulose biosynthesis may trigger this process.  相似文献   

5.
Controlled cellular suicide is an important process that can be observed in various organs during plant development. From the generation of proper sexual organs in monoecious plants to the hypersensitive response (HR) that occurs during incompatible pathogen interactions, programmed cell death (PCD) can be readily observed. Although several biochemical and morphological parameters have been described for various types of cell death in plants, the relationships existing between those different types of PCD events remain unclear. In this work, we set out to examine if two early molecular markers of HR cell death (HIN1 and HSR203J) as well as a senescence marker (SAG12) are coordinately induced during these processes. Our result indicates that although there is evidence of some cross-talk between both cell death pathways, spatial and temporal characteristics of activation for these markers during hypersensitive response and senescence are distinct. These observations indicate that these markers are relatively specific for different cell death programs. Interestingly, they also revealed that a senescence-like process seems to be triggered at the periphery of the HR necrotic lesion. This suggests that cells committed to die during the HR might release a signal able to induce senescence in the neighboring cells. This phenomenon could correspond to the establishment of a second barrier against pathogens. Lastly, we used those cell death markers to better characterize cell death induced by copper and we showed that this abiotic induced cell death presents similarities with HR cell death.  相似文献   

6.
《Autophagy》2013,9(8):1206-1207
Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets. However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants. Intriguingly, HR triggered by another class of immune receptors with different genetic requirements is not compromised, indicating that only a specific subset of immune receptors engage the autophagy pathway for HR execution. Thus, our work provides a primary example of autophagic cell death associated with innate immune responses in eukaryotes as well as of pro-death functions for the autophagy pathway in plants.  相似文献   

7.
Programmed cell death (PCD) is an integral part of plant development and defence. It occurs at all stages of the life cycle, from fertilization of the ovule to death of the whole plant. Without it, tall trees would probably not be possible and plants would more easily succumb to invading microorganisms. Here, we have attempted to categorize plant PCD in relation to three established morphological types of metazoan cell death: apoptosis, autophagy and non-lysosomal PCD. We conclude that (i) no examples of plant PCD conform to the apoptotic type, (ii) many examples of PCD during plant development agree with the autophagic type, and (iii) that other examples are apparently neither apoptotic nor autophagic.  相似文献   

8.
9.
Apoptotic-like programmed cell death in plants   总被引:2,自引:0,他引:2  
Programmed cell death (PCD) is now accepted as a fundamental cellular process in plants. It is involved in defence, development and response to stress, and our understanding of these processes would be greatly improved through a greater knowledge of the regulation of plant PCD. However, there may be several types of PCD that operate in plants, and PCD research findings can be confusing if they are not assigned to a specific type of PCD. The various cell-death mechanisms need therefore to be carefully described and defined. This review describes one of these plant cell death processes, namely the apoptotic-like PCD (AL-PCD). We begin by examining the hallmark 'apoptotic-like' features (protoplast condensation, DNA degradation) of the cell's destruction that are characteristic of AL-PCD, and include examples of AL-PCD during the plant life cycle. The review explores the possible cellular 'executioners' (caspase-like molecules; mitochondria; de novo protein synthesis) that are responsible for the hallmark features of the cellular destruction. Finally, senescence is used as a case study to show that a rigorous definition of cell-death processes in plant cells can help to resolve arguments that occur in the scientific literature regarding the timing and control of plant cell death.  相似文献   

10.

Background

Programmed cell death (PCD) is a necessary part of the life of multi-cellular organisms. A type of plant PCD is the defensive hypersensitive response (HR) elicited via recognition of a pathogen by host resistance (R) proteins. The lethal, recessive accelerated cell death 11 (acd11) mutant exhibits HR-like accelerated cell death, and cell death execution in acd11 shares genetic requirements for HR execution triggered by one subclass of R proteins.

Methodology/Principal Findings

To identify genes required for this PCD pathway, we conducted a genetic screen for suppressors of acd11, here called lazarus (laz) mutants. In addition to known suppressors of R protein-mediated HR, we isolated 13 novel complementation groups of dominant and recessive laz mutants. Here we describe laz1, which encodes a protein with a domain of unknown function (DUF300), and demonstrate that LAZ1 contributes to HR PCD conditioned by the Toll/interleukin-1 (TIR)-type R protein RPS4 and by the coiled-coil (CC)-type R protein RPM1. Using a yeast-based topology assay, we also provide evidence that LAZ1 is a six transmembrane protein with structural similarities to the human tumor suppressor TMEM34. Finally, we demonstrate by transient expression of reporter fusions in protoplasts that localization of LAZ1 is distributed between the cytosol, the plasma membrane and FM4–64 stained vesicles.

Conclusions/Significance

Our findings indicate that LAZ1 functions as a regulator or effector of plant PCD associated with the HR, in addition to its role in acd11-related death. Furthermore, the similar topology of a plant and human DUF300 proteins suggests similar functions in PCD across the eukaryotic kingdoms, although a direct role for TMEM34 in cell death control remains to be established. Finally, the subcellular localization pattern of LAZ1 suggests that it may have transport functions for yet unknown, death-related signaling molecules at the plasma membrane and/or endosomal compartments. In summary, our results validate the utility of the large-scale suppressor screen to identify novel components with functions in plant PCD, which may also have implications for deciphering cell death mechanisms in other organisms.  相似文献   

11.
12.
In plants, apoptotic-like programmed cell death (PCD) can be distinguished from other forms of plant cell death by protoplast condensation that results in a morphologically distinct cell corpse. In addition, there is a central regulatory role for the mitochondria and the degradation of the cell and its contents by PCD associated proteases. These distinguishing features are shared with animal apoptosis as it is probable that plant and animal cell death programmes arose in a shared unicellular ancestor. However, animal and plant cell death pathways are not completely conserved. The cell death programmes may have been further modified after the divergence of plant and animal lineages leading to converged, or indeed unique, features of their respective cell death programmes. In this review we will examine the features of apoptotic-like PCD in plants and examine the probable conserved components such as mitochondrial regulation through the release of apoptogenic proteins from the mitochondrial intermembrane space, the possible conserved or converged features such as “caspase-like” molecules which drive cellular destruction and the emerging unique features of plant PCD such as chloroplast involvement in cell death regulation.  相似文献   

13.
崔克明 《植物学报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD是细胞分化的最后阶段。细胞分化的临界期就处于死亡程序执行中的某个阶段。PCD包含启动期、效应期和清除期三个阶段,其间caspase家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD中的形态学变化和生物化学变化都有着严格的时序性。植物的PCD和动物的PCD有许多共性,包括细胞形态和DNA降解等变化。也有一些不同,植物PCD的产物既可被其它细胞吸收利用;也可用于构建自身的次生细胞壁。  相似文献   

14.
植物细胞程序死亡的机理及其与发育的关系   总被引:41,自引:3,他引:41  
崔克明 《植物学通报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD的细胞分化的最后阶段。细胞分化的临界期就牌死亡程序执行中的某个阶段。PCD包含启动期和清除期三个阶段,其间CASPASE家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD  相似文献   

15.
The plant innate immune response includes the hypersensitive response (HR), a form of programmed cell death (PCD). PCD must be restricted to infection sites to prevent the HR from playing a pathologic rather than protective role. Here we show that plant BECLIN 1, an ortholog of the yeast and mammalian autophagy gene ATG6/VPS30/beclin 1, functions to restrict HR PCD to infection sites. Initiation of HR PCD is normal in BECLIN 1-deficient plants, but remarkably, healthy uninfected tissue adjacent to HR lesions and leaves distal to the inoculated leaf undergo unrestricted PCD. In the HR PCD response, autophagy is induced in both pathogen-infected cells and distal uninfected cells; this is reduced in BECLIN 1-deficient plants. The restriction of HR PCD also requires orthologs of other autophagy-related genes including PI3K/VPS34, ATG3, and ATG7. Thus, the evolutionarily conserved autophagy pathway plays an essential role in plant innate immunity and negatively regulates PCD.  相似文献   

16.
The hypersensitive response (HR) involves programmed cell death (PCD) in response to pathogen infection. To investigate the pathogen resistance signaling pathway, we previously identified the Arabidopsis mutant cpr22, which displays constitutive activation of multiple defense responses including HR like cell death. The cpr22 mutation has been identified as a 3 kb deletion that fuses two cyclic nucleotide-gated ion channel (CNGC)-encoding genes, ATCNGC11 and ATCNGC12, to generate a novel chimeric gene, ATCNGC11/12. In this study, we conducted a characterization of cell death induced by transient expression of ATCNGC11/12 in Nicotiana benthamiana. Electron microscopic analysis of this cell death showed similar characteristics to PCD, such as plasma membrane shrinkage and vesicle formation. The hallmark of animal PCD, fragmentation of nuclear DNA, was also observed in ATCNGC11/12-induced cell death. The development of cell death was significantly suppressed by caspase-1 inhibitors, suggesting the involvement of caspases in this process. Recently, vacuolar processing enzyme (VPE) was isolated as the first plant caspase-like protein, which is involved in HR development. In VPE-silenced plants development of cell death induced by ATCNGC11/12 was much slower and weaker compared to control plants, suggesting the involvement of VPE as a caspase in ATCNGC11/12-induced cell death. Complementation analysis using a Ca2+ uptake deficient yeast mutant demonstrated that the ATCNGC11/12 channel is permeable to Ca2+. Additionally, calcium channel blockers such as GdCl3 inhibited ATCNGC11/12-induced HR formation, whereas potassium channel blockers did not. Taken together, these results indicate that the cell death that develops in the cpr22 mutant is indeed PCD and that the chimeric channel, ATCNGC11/12, is at the point of, or up-stream of the calcium signal necessary for the development of HR.  相似文献   

17.
In plants, programmed cell death (PCD) is an important mechanism that controls normal growth and development as well as many defence responses. At present, research on PCD in different plant species is actively carried out due to the possibilities offered by modern methods in molecular biology and the increasing amount of genome data. The pine seed provides a favourable model for PCD because it represents an interesting inheritance of seed tissues as well as an anatomically well-described embryogenesis during which several tissues die via morphologically different PCD processes.Key words: conifer, developmental cell death, embryogenesis, megagametophyte, necrotic cell death, pine, seed development  相似文献   

18.
Programmed cell death (PCD) is an essential part of the defence response in plants and animals against pathogens. Here, we report that PCD is also involved in defence against pathogens of fungi. Vegetative incompatibility is a self/non-self recognition system in fungi that results in PCD when cells of incompatible strains fuse. We quantified the frequency of cell death associated with six vegetative incompatibility (vic) genes in the filamentous ascomycete fungus Cryphonectria parasitica. Cell death frequencies were compared with the effects of vic genes on transmission of viruses between the same strains. We found a significant negative correlation between cell death and virus transmission. We also show that asymmetry in cell death correlates with asymmetry in virus transmission; greater transmission occurs into vic genotypes that exhibit delayed or infrequent PCD after fusion with an incompatible strain. Furthermore, we found that virus infection can have a significant, strain-specific, positive or negative effect on PCD. Specific interactions between vic gene function and viruses, along with correlations between cell death and transmission, strongly implicate PCD as a host-mediated pathogen defence strategy in fungi.  相似文献   

19.
Programmed cell death (PCD) is involved in plant development and pathogen defence and can be triggered in vitro by several biotic and abiotic stimuli. In this report ( β - d -galactosyl)3 Yariv reagent, a chemical that specifically binds to arabinogalactan-proteins (AGPs), completely inhibited cell growth and induced PCD in tobacco BY-2 suspension cultured cells. Analysis of DNA from these cells, by agarose gel electrophoresis, revealed a DNA ladder consisting of multimers of 140–170 bp, similar to apoptotic animal DNA internucleosomal fragmentation. Complementary morphological studies revealed additional PCD characteristics in the Yariv-treated BY-2 cells, including cell shrinkage and cytoplasmic condensation. These studies demonstrate the usefulness of BY-2 cells as a model plant PCD system and confirm a link between AGPs and PCD.  相似文献   

20.
Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号