首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation describes the synthesis and characterization of novel biodegradable nanoparticles based on chitosan for biomedical applications. Natural di- and tricarboxylic acids were used for intramolecular cross-linking of the chitosan linear chains. The condensation reaction of carboxylic groups and pendant amino groups of chitosan was performed by using water-soluble carbodiimide. This method allows the formation of polycations, polyanions, and polyampholyte nanoparticles. The prepared nanosystems were stable in aqueous media at low pH, neutral, and mild alkaline conditions. The structure of products was determined by NMR spectroscopy, and the particle size was identified by laser light scattering (DLS) and transmission electron microscopy (TEM) measurements. It was found that particle size depends on the pH, but at a given pH, it was independent of the ratio of cross-linking and the cross-linking agent. Particle size measured by TEM varied in the range 60-280 nm. In the swollen state, the average size of the particles measured by DLS was in the range 270-370 nm depending on the pH. The biodegradable cross-linked chitosan nanoparticles, as solutions or dispersions in aqueous media, might be useful for various biomedical applications.  相似文献   

2.
The nanostructured polyaniline (NSPANI) and its gold nano composite (GNP) with controlled size distribution were developed using structure directing agents (SDA). The nano structure of polyaniline were investigated by UV-Visible spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), fourrier transform spectroscopy (FTIR), X-ray crystallography and scanning electron microscopy(SEM) etc. These characterization techniques reveal the spherical shape of polyaniline nanoparticles and size in the range of 7-50 nm depending on the type of dopant and nature of SDA. In general, these NSCP colloidal solutions are highly stable. UV-Visible spectra show mainly two peaks at 360-430 nm and at 780-870 nm. The bathochromic shift of the UV-Visible bands as compared to bulk polyaniline, reflect high DC conductivity. TEM and DLS results demonstrate the formation of nanostructure with narrow size distribution. Due to remarkable properties of, it is used as an efficient transduction matrice for the development of highly sensitive, reproducible, stable optical cholesterol and H202 biosensors having wide range of linearity and low Km values.  相似文献   

3.
Synthesis and magnetic properties of biocompatible hybrid hollow spheres   总被引:2,自引:0,他引:2  
Ding Y  Hu Y  Zhang L  Chen Y  Jiang X 《Biomacromolecules》2006,7(6):1766-1772
Magnetic hybrid hollow spheres of about 200 nm were prepared by a core-template-free route, that is, adding Fe3O4 nanoparticles stabilized by poly(vinyl alcohol) (PVA) to an aqueous solution of polymer-monomer pairs composed of a cationic polymer, chitosan (CS), and an anionic monomer, acrylic acid (AA), followed by polymerization of acrylic acid and selective cross-linking of chitosan at the end of polymerization. The obtained hybrid spheres were characterized by dynamic light scattering (DLS) in aqueous solution and observed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) in the solid state. Fourier transform infrared spectroscopy (FTIR) and X-ray and electron diffractions revealed that the Fe3O4 nanoparticles were incorporated into the shells of chitosan-poly(acrylic acid) (CS-AA) hollow spheres. Magnetization studies and M?ssbauer spectroscopy suggested that the chains (or islands) of iron oxide nanoparticles were most likely formed in the walls of the hollow spheres. The phantom test of magnetic resonance imaging showed that the synthesized hybrid hollow spheres had a significant magnetic resonance signal enhancement in T2-weighted image.  相似文献   

4.
Chitosan covalent nanogels cross-linked with genipin were prepared by template chemical cross-linking of chitosan in polyion complex micelle (PIC) nanoreactors. By using this method, we were able to prepare chitosan nanogels using only biocompatible materials without organic solvents. PIC were prepared by interaction between chitosan (X(n) = 23, 44, and 130) and block copolymer poly(ethylene oxide)-block-poly[sodium 2-(acrylamido)-2-methylpropanesulfonate] (PEO-b-PAMPS) synthesized by single-electron transfer-living radical polymerization (SET-LRP). PIC with small size (diameter about 50 nm) and low polydispersity were obtained up to 5 mg/mL. After cross-linking of chitosan with genipin, the nanoreactors were dissociated by adding NaCl. The dissociation of the nanoreactors and the formation of the nanogels were confirmed by (1)H NMR, DLS, and TEM. The size of the smallest nanogels was about 50 nm in the swollen state and 20 nm in the dry state. The amount of genipin used during reticulation was an important parameter to modulate the size of the nanogels in solution.  相似文献   

5.
A simple preparation method for biocompatible nanoparticles in high concentration (0.5 wt %) by self-assembly of chitosan and carboxymethyl cellulose hydrolysates was developed. Chitosan and carboxymethyl cellulose were hydrolyzed beforehand with chitosanase and cellulase respectively to make fragments having lower molecular weights. Nanoparticles were spontaneously formed only by mixing the two hydrolysate solutions. The particle size distribution was relatively narrow, about 200 nm in mean size. The mean particle size decreased from 226 nm to 165 nm with decreasing molecular weight of chitosan hydrolysate from 9.5 to 6.8 kDa. The mixing ratio of chitosan and carboxymethyl cellulose hydrolysates also affected particle size. Changes in particle size are discussed in relation to a possible mechanism of polyionic complexation. The chitosan-carboxymethyl cellulose nanoparticles were stably suspended over 1 week even under low pH (pH 3.0), high ionic strength (NaCl 1 M), or low temperature (4 degrees C) conditions.  相似文献   

6.
Li S  Zhang Y  Xu X  Zhang L 《Biomacromolecules》2011,12(8):2864-2871
Silver nanoparticles were constructed by using triple helical polysaccharide (lentinan) dissolved in water as matrix for the first time. The structure, morphology, and size of the nanocomposites in the polysaccharide aqueous solutions were investigated with UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and dynamic laser light scattering (DLS). The results revealed that the silver nanoparticles were attached to the polysaccharide chains through the strong noncovalent interactions, leading to the good dispersion of silver nanoparticles with mean radius of 6 nm in water. The silver nanoparticles were stable in the lentinan aqueous solution for 9 months. However, with an addition of NaOH, the polysaccharide with the imperfect helical structure broken partially by NaOH could aggregate in the alkali aqueous solution. The aggregation of the lentinan-bonded silver nanoparticles increased with an increase in the NaOH concentration, whereas the size of the silver nanoparticles barely changed, further confirming that the Ag nanoparticles were stable in this system. The aggregation was related to the conformation transition of the polysaccharide from the triple helix to random coil in the solution. A new method to detect the aggregates and aggregation rate was established according to the intensity of the maximum absorption peaks of the polysaccharide labeled by Ag nanoparticles in the UV spectrum.  相似文献   

7.
Yu H  Wang W  Chen X  Deng C  Jing X 《Biopolymers》2006,83(3):233-242
A novel synthetic approach to biodegradable amphiphilic copolymers based on poly (epsilon-caprolactone) (PCL) and chitosan was presented, and the prepared copolymers were used to prepare nanoparticles successfully. The PCL-graft-chitosan copolymers were synthesized by coupling the hydroxyl end-groups on preformed PCL chains and the amino groups present on 6-O-triphenylmethyl chitosan and by removing the protective 6-O-triphenylmethyl groups in acidic aqueous solution. The PCL content in the copolymers can be controlled in the range of 10-90 wt %. The graft copolymers were thoroughly characterized by 1H NMR, 13C NMR, FT-IR and DSC. The nanoparticles made from the graft copolymers were investigated by 1H NMR, DLS, AFM and SEM measurements. It was found that the copolymers could form spherical or elliptic nanoparticles in water. The amount of available primary amines on the surface of the prepared nanoparticles was evaluated by ninhydrin assay, and it can be controlled by the grafting degree of PCL.  相似文献   

8.
Silver nanoparticles (AgNPs) are gaining considerable importance due to their attractive physicochemical properties for many applications. In the present study, (Ag NPs) were synthesized by the reduction of aqueous solutions of silver nitrate (AgNO3) with powder and solvent extracts of Padina pavonia (brown algae). The obtained nanoparticles exhibited high stability, rapid formation of the biogenic process (2 min -3 h), small size (49.58–86.37 nm) (the diameter of formed nanoparticles was measured by TEM and DLS) and variable shapes (spherical, triangular, rectangle, polyhedral and hexagonal). Preliminary characterization of nanoparticles was monitored by using UV–visible spectroscopy (UV–vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and finally by Fourier Transform Infrared spectroscopy (FTIR). The ratios of converted Ag NPs were recorded as 88.5; 86.2 and 90.5% in case of P. pavonia powder. extract and chloroform extract, respectively.  相似文献   

9.
Biosynthesis of gold nanoparticles has been accomplished via reduction of an aqueous chloroauric acid solution with the dried biomass of an edible freshwater epilithic red alga, Lemanea fluviatilis (L.) C.Ag., as both reductant and stabilizer. The synthesized nanoparticles were characterized by UV–visible, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and dynamic light scattering (DLS) studies. The UV–visible spectrum of the synthesized gold nanoparticles showed the surface plasmon resonance (SPR) at around 530 nm. The powder XRD pattern furnished evidence for the formation of face-centered cubic structure of gold having average crystallite size 5.9 nm. The TEM images showed the nanoparticles to be polydispersed, nearly spherical in shape and have sizes in the range 5–15 nm. The photoluminescence spectrum of the gold nanoparticles excited at 300 nm showed blue emission at around 440 nm. Gold nanoparticles loaded within the biomatrix studied using a modified 2,2-diphenyl-1-picrylhydrazyl (DPPH) method exhibited pronounced antioxidant activity.  相似文献   

10.
The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics.  相似文献   

11.
The P. longifolia mediated silver (PL-AgNPs) nanoparticles are very stable and efficient. UV–Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to characterize the produced AgNPs. UV–Vis analysis showed a characteristic peak at 435 nm corresponding to surface plasmon resonance. The synthesis process was spectrophotometrically optimized for various parameters. After optimization, highly stable AgNPs were prepared using 3.0 ml of P. longifolia leaf extract, pH 7.0, 1.0 mM AgNO3, and 60 °C. The zeta potential was measured by DLS, which showed ?20.8 mV and the PDI value was 5.42. TEM and SEM analysis shows a spherical shape of the synthesized nanoparticles, and the size was measured between 10 and 40 nm. EDX analysis showed intense peaks from silver and oxygen and small peaks from various metal atoms such as Na, P, S and Al indicating their presence in trace amounts. The average size of the PL-AgNPs was 14 nm. The phytochemical analysis shows that the presence of alkaloids, essential oils and saponins seems to be responsible for the synthesis of nanoparticles. PL-AgNPs were further investigated for their antifungal activity against Alternaria alternata. The minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and effect of nanoparticles on cytomorphology of A. alternata have also been reported. Biosynthesized nanoparticles have proven to be inexpensive, environmentally friendly, stable, easily reproducible, and highly effective against plant-pathogenic fungi.  相似文献   

12.
A method has been developed to obtain micelles based on amphiphilic chitosan derivatives which were synthesized by grafting hydrophobic stearoyl, palmitoyl and octanoyl aliphatic chains onto molecules of chitosan with degrees of substitution from 0.9% to 29.6%. The N-fatty acylations were carried out by reacting carboxylic anhydride with chitosan in dimethyl sulfoxide. The chitosan derivative-based micelles were spherical as observed by transmission electron microscope (TEM). Their sizes were in the range of 140–278 nm as measured by dynamic light scattering (DLS). The micellar critical aggregation concentration (CAC) can reach 1.99 × 10−3 mg/mL, indicating that they are more stable upon dilution than micelles based on other chitosan derivatives such as deoxycholic acid-modified chitosan reported previously.  相似文献   

13.
Chitosan-N-2-methylhydroxypyridine-6-methylcorboxylate (Ch-PDC) and chitosan-N-2-methylhydroxypyridine-6-methylhydroxy thiocarbohydrazide (Ch-PDC-Th) were synthesized for the first time using chitosan as precursor. Chitosan, Ch-PDC, Ch-PDC-Th were used in the synthesis of gold nanoparticles (AuNP) in aqueous medium. Chitosan and Ch-PDC-Th possess reducing properties which enabled the 'green' synthesis of AuNPs. The stabilization of the AuNPs was as a result of the thiocarbide (SC) and amine (NH(2)) groups in the chitosan matrix. The modified chitosan, its derivatives and the resulting AuNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible (UV-vis) spectroscopy, Raman scattering measurements, powder X-ray diffraction (PXRD) and thermo gravimetric analysis (TGA). Particle size, morphology, segregation and individuality of the AuNPs were examined by transmission electron microscope (TEM) and energy dispersion spectroscopy (EDS). An average AuNPs size of 20 nm was observed for chitosan and Ch-PDC-Th while Ch-PDC was 50 nm. In comparison, AuNPs resulting from Ch-PDC-Th precursor has the most enhanced Raman and fluorescent intensities and was stable for over 2 months.  相似文献   

14.
Cross-linking chitosan nanofibers   总被引:1,自引:0,他引:1  
In the present study, we have electrospun various grades of chitosan and cross-linked them using a novel method involving glutaraldehyde (GA) vapor, utilizing a Schiff base imine functionality. Chemical, structural, and mechanical analyses have been conducted by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Kawabata microtensile testing, respectively. Additionally, the solubilities of the as-spun and cross-linked chitosan mats have been evaluated;solubility was greatly improved after cross-linking. SEM images displayed evidence that unfiltered low, medium, and high molecular weight chitosans, as well as practical-grade chitosan, can be electrospun into nanofibrous mats. The as-spun medium molecular weight chitosan nanofibers have a Young's modulus of 154.9 +/- 40.0 MPa and display a pseudo-yield point that arose due to the transition from the pulling of a fibrous mat with high cohesive strength to the sliding and elongation of fibers. As-spun mats were highly soluble in acidic and aqueous solutions. After cross-linking, the medium molecular weight fibers increased in diameter by an average of 161 nm, have a decreased Young's modulus of 150.8 +/- 43.6 MPa, and were insoluble in basic, acidic, and aqueous solutions. Though the extent to which GA penetrates into the chitosan fibers is currently unknown, it is evident that the cross-linking resulted in increased brittleness, a color change, and the restriction of fiber sliding that resulted in the loss of a pseudo-yield point.  相似文献   

15.
We design and develop chitosan nanoparticles which load two different drugs simultaneously. Aspirin (acetylsalicylic acid, ASA), a hydrophilic drug and probucol (PRO), a hydrophobic drug, are chosen as typical drugs, which are widely used to treat restenosis. The drug loaded chitosan nanoparticles are prepared by gelation of chitosan with tripolyphosphate (TPP) by ionic cross-linking. The physicochemical properties of nanoparticles are investigated by FTIR, transmission electron microscope (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The images show that these particles are spherical in shape with ASA being in the amorphous phase, while PRO is crystalline. The properties of chitosan nanoparticles such as encapsulation capacity and controlled release behaviors of ASA and PRO are evaluated. Experimental results indicate that the loading capacity (LC), encapsulation efficiency (EE) and ASA and PRO release behaviors are affected by several factors including pH, concentration of TPP, chitosan molecular weight (MW) and ASA initial concentration as well as PRO. In vitro release shows that the nanoparticles provide a continuous release. Entrapped ASA is released for more than 24 h and PRO lasts longer for 120 h.  相似文献   

16.
Water-soluble chitosan (WSC)-poly(l-aspartic acid) (PASP)-polyethylene glycol (PEG) nanoparticles (CPP nanoparticles) were prepared spontaneously under quite mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and their physicochemical properties were characterized by turbidity, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and zeta potential. PEG was chosen to modify WSC-PASP nanoparticles to make a protein-protective agent. Investigation on the encapsulation efficiency and loading capacity of the bovine serum albumin (BSA)-loaded CPP nanoparticles was also conducted. Encapsulation efficiency was obviously decreased with the increase of initial BSA concentration. Furthermore, its in vitro release characteristics were evaluated at pH 1.2, 2.5, and 7.4. In vitro release showed that these nanoparticles provided an initial burst release, followed by a slowly sustained release for more than 24 h. The BSA released from CPP nanoparticles showed no significant conformational change compared with native BSA, which is superior to the BSA released from nanoparticles without PEG. A cell viability study suggested that the nanoparticles had good biocompatibility. This nanoparticle system was considered promising as an advanced drug delivery system for the peptide and protein drug delivery.  相似文献   

17.
Ring-opening reaction of low molecular weight polyethylenimine with an Mw of 800 Da (800 Da PEI) with methylthiirane produced thiolated polyethylenimine (PEI-SHX ). The thiolation degree X, which is the average number of thiol groups on a PEI molecule, was readily adjusted by the methylthiirane/PEI ratio. Oxidation of the thiolated PEIs with DMSO afforded disulfide cross-linked PEIs (PEI-SSX ). The molecular weights of PEI-SS X were estimated by viscosity measurement to be 7100, 8000, and 8400 for X=2.6, 6.5, and 9.4, respectively. The PEI-SSX series can bind and condense plasmid DNAs effectively forming nanosized polyplexes. The size of dry polyplexes is less than 100 nm on the TEM pictures. In solution, the size of the polyplexes was measured by DLS to be about 400 nm. In vitro experiments showed that the PEI-SS X series have a lower cytotoxicity and higher gene transfection efficiency compared with the high molecular weight PEI with Mw of 25 KDa. The presence of fetal bovine serum did not decrease the transfection efficiency. The results proved the hypothesis that reductively degradable disulfide-containing PEIs could possesses simultaneously higher gene transfection efficiency and lower cytotoxicity than the nondegradable ones.  相似文献   

18.
载基因壳聚糖纳米粒的制备及免疫增强作用的初步研究   总被引:2,自引:0,他引:2  
摘 要 目的: 制备壳聚糖载基因纳米粒,并对其体外转染效率及其在小鼠体内的免疫增强效果进行初步研究。方法: 以本课题组构建的口蹄疫DNA疫苗为模型药物,采用复凝聚法制备纳米粒;用透射电镜观察形态;用纳米粒度分析仪测定粒径、多分散度和zeta电位;凝胶阻滞分析测定基因在纳米粒中的位置;用体外基因转染实验评价纳米粒的转染活性。用载基因壳聚糖纳米粒免疫雌性Balb/c小鼠,检测免疫小鼠的细胞免疫和体液免疫水平。结果: 所制备的载基因纳米粒形态规则、大多成球形,平均粒径约为150nm,多分散度<0.26,zeta电位约为21mV;凝胶分析结果表明质粒DNA与壳聚糖分子间可以通过电性结合作用而完全结合,基因几乎全部被包裹在纳米粒内部;体外基因转染实验表明壳聚糖作为一种新型的非病毒基因递送载体能够高效传递DNA进入BHK-21细胞,基因能够在该细胞中高效表达;小鼠免疫实验表明纳米粒不仅能诱导机体产生较高的细胞免疫水平,而且体液免疫水平也显著提高。结论: 壳聚糖纳米粒能将基因递送到细胞内并且能够表达,小鼠免疫实验显示其具有良好的免疫增强效果。  相似文献   

19.
目的:以植物乳杆菌胞外多糖(EPS)作为稳定剂和包覆剂,安全、简便地制备高稳定性胞外多糖-纳米硒复合物(E-SeNPs),并研究其稳定性和抗氧化活性。方法:将植物乳杆菌胞外多糖引入亚硒酸钠与抗坏血酸的反应体系中,室温合成E-SeNPs。采用透射电子显微镜(TEM)、动态光散射(DLS)、紫外可见光谱(UV-vis)和傅里叶变换红外光谱(FT-IR)等技术对E-SeNPs的尺寸、形貌、结构及稳定性进行研究。此外,通过检测E-SeNPs的还原能力、ABTS+的清除率评估其体外抗氧化活性。结果:制备了具有良好分散性、稳定性的E-SeNPs,其平均粒径为(45.17±11.9)nm,带负电荷(-31.3mV)。同时,由于包覆作用,该E-SeNPs在水溶液中可稳定存在20天。最后,相同浓度下,E-SeNPs的还原力、ABTS+清除率都明显高于EPS和硒纳米颗粒(SeNPs),表现出了良好的抗氧化活性。结论:获得了一种新型的SeNPs稳定剂和包覆剂,简便、安全地制备了高稳定性、水分散性良好且具有良好抗氧化活性的SeNPs。  相似文献   

20.
Yu H  Chen X  Lu T  Sun J  Tian H  Hu J  Wang Y  Zhang P  Jing X 《Biomacromolecules》2007,8(5):1425-1435
Polypeptide/polysaccharide graft copolymers poly(L-lysine)-graft-chitosan (PLL-g-Chi) were prepared by ring-opening polymerization (ROP) of epsilon-benzoxycarbonyl L-lysine N-carboxyanhydrides (Z-L-lysine NCA) in the presence of 6-O-triphenylmethyl chitosan. The PLL-g-Chi copolymers were thoroughly characterized by 1H NMR, 13C NMR, Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). The number-average degree of polymerization of PLL grafted onto the chitosan backbone could be adjusted by controlling the feed ratio of NCA to 6-O-triphenylmethyl chitosan. The particle size of the complexes formed from the copolymer and calf thymus DNA was measured by dynamic light scattering (DLS). It was found in the range of 120 approximately 340 nm. The gel retardation electrophoresis showed that the PLL-g-Chi copolymers possessed better plasmid DNA-binding ability than chitosan. The gene transfection effect in HEK 293T cells of the copolymers was evaluated, and the results showed that the gene transfection ability of the copolymer was better than that of chitosan and was dependent on the PLL grafting ratio. The PLL-g-Chi copolymers could be used as effective gene delivery vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号