首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have identified and characterized a novel mouse Igk-V gene family, which we have designated Igk-V34. Southern hybridization and nucleotide sequence analysis indicate that this family is comprised of either one or two members in mice of different Igk haplotypes. The gene family members share between 95% and 98% sequence similarity, indicating that they diverged only recently during the evolution of the Igk locus. Sequence relationships between members of this family are discussed.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M35154-7. Offprint requests to: A. J. Caton.  相似文献   

2.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M74030 for HLA DRB1*14.7, M74031 for HLA DRB1*14.8, and M74032 for HLA DRB1*14.6.  相似文献   

3.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M77670 (DRB1 * AB3), M77671 (DRB1 * AB4), MM77672 (DRB1 * AB2), MM77673 (DRB1*A01), M81670 (DRB1*0410), and M81700 (DRB1 * 0411).  相似文献   

4.
The presence of M protein on the surface of group A streptococci (GAS) confers the ability of the cell to resist phagocytosis in the absence of type-specific antibodies. It undergoes antigenic variation with more than 80 different serotypes having been defined. We have sequenced the M protein gene (emm1.1) from strain CS190 and present evidence that individual nucleotide substitutions are responsible for sequence variation in the N-terminal non-repeat region of emm1.1 and these substitutions have altered antibody recognition of opsonic epitopes. The N-terminal non-repeat domains of two other closely related strains, 71-155 and 76-088, were found to have sequence identical to emm1.1 with the addition of a 21 bp insert. This study provides the first evidence that nucleotide substitutions and small insertions are responsible for size and antigenic variation in the N terminal non-repeat domain of the M protein of GAS.  相似文献   

5.
The NTFB genes from two major histocomptibility complex (MHC) ancestral haplotypes have been compared. The genes carried by the ancestral haplotypes 8.1 (A1,B8,BfS,C4AQ0, C4B1,DR3) and 57.1 (A1,B57, BfS,C4A6,C4B1,DR7) were cloned and sequenced to determine the degree of polymorphism. In this report we show that the r e spective TNF genes are allelic and have unique nucleotide sequences. The data demonstrate the presence of three nucleotide differences between the TNFB alleles of 8.1 and 57.1. Two of the differences occur in untranslated regions of the gene but the third nucleotide change results in amino acid differences in the mature TNFB protein. These polymorphisms may have implications with respect to differential regulation in disease-and nondisease-associated haplotypes.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M55913.  相似文献   

6.
The nucleotide sequences of one Ovar-DQB gene, excluding exon 1 and parts of the introns, and one Ovar-DRB pseudogene are presented. The structure of the Ovar-DQB gene is typical of a major histocompatibility complex (MHC) class II B gene and demonstrats considerable sequence similarity with that of humans including such characteristics as the less common polyadenylation signal, ATTAAA. The ovine sequence has a typical 5' acceptor splice signal for exon 5, thus potentially encoding a full length cytoplasmic tail. The Ovar-DRB gene identified in this study was found to be a pseudogene, lacking a defined exon 2 and containing premature termination codons in both exons 3 and 4. The 3' donor splice site of exon 3 is also atypical. A purine-pyrimidine microsatellite repeat, (dCdA)15, in the 3' region of the pseudogene may be a hotspot for recombination within the ovine DR subregion.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M33306 and M33307. Address correspondence and offprint requests to: M. R. Brandon.  相似文献   

7.
Recently, we have observed the insertion of a retrotransposon into the interleukin-6 (II-6) locus of a mouse somatic cell line. Here we report the characterization of Il-6 genomic regions from both mouse and rat. Restriction site analysis, DNA sequence analysis, and computer-assisted search revealed eight retrotransposon-like elements distributed over a 25 kilobase (kB) mouse Il-6 region. In the rat, five different retrotransposons have been identified within a 17 kb Il-6 region. The retrotransposons belong to the LINE-, Alu I or Alu II families, or to a rat specific class of retrotransposons. Some of the retrotransposons class of retrotransposons. Some of the retrotransposons exhibit characteristic features such as target site duplication and a poly A-tract. Remarkably, several retrotransposons map to different chromosomal locations in the mouse and rat. A genealogical tree of mouse, rat, and human Il-6 loci demonstrates a series of retrotranspositions that recently occurred in evolution. These results suggest that the Il-6 locus serves as a preferred target site for retrotransposon integration during evolution.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M36993-4 (L.1.R3), M36995 (L1.R2), and M36996 (L1.M1/L1.M2).This work contains part of the doctoral thesis of Z. Qin and I. Schuller.  相似文献   

8.
An iron-regulated gene, pbsC, required for siderophore production in fluorescent Pseudomonas sp. strain M114 has been identified. A kanamycin-resistance cassette was inserted at specific restriction sites within a 7 kb genomic fragment of M114 DNA and by marker exchange two siderophore-negative mutants, designated M1 and M2, were isolated. The nucleotide sequence of approximately 4 kb of the region flanking the insertion sites was determined and a large open reading frame (ORF) extending for 2409 by was identified. This gene was designated pbsC (pseudobactin synthesis C) and its putative protein product termed PbsC. PbsC was found to be homologous to a family of enzymes involved in the biosynthesis of secondary metabolites, including EntF of Escherichia coli. These enzymes are believed to act via ATP-dependent binding of AMP to their substrate. Several areas of high sequence homology between these proteins and PbsC were observed, including a conserved AMP-binding domain. The expression of pbsC is iron-regulated as revealed when a DNA fragment containing the upstream region was cloned in a promoter probe vector and conjugated into the wild-type strain, M114. The nucleotide sequence upstream of the putative translational start site contains a region homologous to previously defined –16 to –25 sequences of iron-regulated genes but did not contain an iron-box consensus sequence. It was noted that inactivation of the pbsC gene also affected other iron-regulated phenotypes of Pseudomonas M114.  相似文献   

9.
Molecular cloning and chromosomal assignment of a human perforin (PFP) gene   总被引:7,自引:0,他引:7  
Human perforin cDNA was isolated and the complete nucleotide sequence of the gene determined. The deduced amino acid sequence of human perforin showed 68.4% similarity to that of mouse perforin. RNA blot analysis of the human perforin gene revealed that the gene product is expressed preferentially in killer-type cells among cell lines tested, and in large granular lymphocytes among the peripheral blood mononuclear cells. In situ hybridization analysis with a human perforin cDNA probe revealed that the human perforin (PFP) gene is located on chromosome17q11-21. The nucleotide sequence data reported in this paper have been submitted to the GeBank nucleotide sequence database and have been assigned the accession number M28393.  相似文献   

10.
We determined the DNA sequence of the enzymatically amplified second exon of theDRB1 gene of theDRw12 haplotypes derived from three Japanese donors and found two distinct subtypes of theDRw12 haplotype. The two subtypes, designatedDRw12a andDrw12b, had single-base substitutions that predicted one amino acid change at residue number 67. The sequence of theDrw12a andDRw12b subtypes differed from those of the otherDR haplotypes, but in the first hypervariable region of theDRB1 gene the sequences were identical to those of theDRw8(Dw8.1) andDRw8(Dw8.3) haplotypes. TheDRw12a andDRw12b subtypes were detected in a wide range of Japanse donors by genotyping with sequence-specific oligonucleotide probes synthesized according to the DNA sequence of the two subtypes. Results of this study demonstrated that theDRw12 haplotypes in the Japanese population are genetically diverse, as many otherDR haplotypes are. The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M27509, M27510, M27511.  相似文献   

11.
The carboxyterminal region of the heavy chains, according to its hydrophilic or hydrophobic properties, determines whether the immunoglobulin will be secreted or membrane-bound. We have determined the nucleotide sequences of the human IGHG3, IGHA1, and IGHA2 membrane exons isolated from genomic DNA libraries. The IGHG3 M1 and M2 exons are separated by a long intron of 2.1 kilobases (kb) containing an highly repeated motif of 34 base pairs (bp). The IGHA1 and IGHA2 genes, like the mouse Igh-A gene, have a single exon encoding the extracellular, transmembrane, and cytoplasmic regions. For each class of immunoglobulins, the sequences of membrane exons are highly conserved between human and mouse, but no alignment is possible for the flanking regions. In contrast, for a same species, the sequences of the heavy chain membrane exons differ from one class to another. While the hydrophobic profile of the membrane core is well conserved, the cytoplasmic region differs in length and in composition. None of the intracellular domains presents the sequence implied in signal transduction, implying that membrane immunoglobulins need other proteins, which probably interact with the constant or membrane domain, to transmit signals leading to B-cell activation.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the accession numbers M35288-91. Address correspondence and offprint requests to: M.-P. Lefranc.  相似文献   

12.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence data base and have been assigned the accesion number M74842. The name DQB1*0304 has been officially assigned by the WHO Nomenclature Committee in November 1991. This follows the agreed policy that, subject to the conditions stated in the most recent Nomenclature Report (WHO Nomenclature Committee for factors of the HLA system, 1991), names will be assigned to new sequences as they are identified. List of such new names will be published in the following WHO Nomenclature Report.  相似文献   

13.
HuLy-m3 is an M r 47 000 pan-leukocyte antigen detected by the monoclonal antibody (mAb) 5-4.8. This report describes the isolation and analysis of a cDNA clone encoding HuLy-m3. Serological analysis demonstrated that antibodies of the CD48 cluster also reacted with transfected cells expressing HuLy-m3. The DNA sequence of the clone suggests linkage to the cell membrane through a glycosyl phosphatidylinositol tail and this was verified experimentally. Sequence similarity with the human B-cell activation antigen Blast-1 was noted.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M 59904.  相似文献   

14.
The nucleotide sequence of bovine MHC class IIDQB andDRB genes   总被引:2,自引:2,他引:0  
The nucleotide sequences of most of the exons and parts of the introns of twoBoLA-DQB genes and twoBoLA-DRB genes have been determined. The structure of these genes is very similar to that of human major histocompatibility complex (MHC) class II genes. The twoDQB genes probably represent true alleles. Based on the exons sequenced, bothDQB genes and one of theDRB genes seem to be functional. The otherDRB gene is a pseudogene; stopcodons are found in the exons encoding the second and transmembrane domain and, furthermore, a 2 base pair (bp) deletion has occured in the leader exon which places the initiation start codon out of frame. Also in this pseudogene, an almost perfect inverted repeat of 200 bp is found flanking the exon encoding the first domain, which might have been the result of a duplication/inversion event. The sequences presented in this paper do not contain any repetitions. Therefore, DNA fragments containing these sequences can be used as homologous bovine probes in restriction fragment length polymorphism (RFLP) analysis to study disease association in cattle.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M30002–M30014. Address correspondence and offprint requests to: M. A. M. Groenen.  相似文献   

15.
The nucleotide sequence data reported in this Papershave been submitted to the EMBL nucleotide sequence database and have been assigned the accession number X80916 (HSHCGVII)  相似文献   

16.
Serological studies have suggested the presence of a new HLA-B39 subtype (B39.2) in the Japanese population. To identify the new HLA-B39 subtype and compare it with an other HLA-B39 subtype (B39.1), the genes encoding HLA-B39.1 (B * 39013) and B39.2 (B * 3902) have been cloned from Japanese. We have sequenced these genes and completed the sequence of HLA-B39.1 (B *39011 ) gene from a Caucasian that was partially sequenced. Comparison of the sequence data revealed that B * 3902 and B * 39013 differ by three nucleotide substitutions which result in a two amino acids change at residues 63 and 67, while one silent substitution at codon 312 is found between B * 39011 and B * 39013. These results suggest that B * 3902 has evolved from B * 39013 rather than B * 39011.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M94051 (HLA-B*39013), M94052 (HLA-B*39011), and M94053 (HLA-B*3902).  相似文献   

17.
18.
A restriction endonuclease with a novel site-specificity has been isolated from the Escherichia coli strain RFL31. The nucleotide sequences around a single Eco31I cut on pBR322 DNA and two cuts of λ DNA have been compared. A common 5′GAGACC3′CTCTGG sequence occurs near each cleavage site. Precise mapping of the cleavages in both DNA strands places the cuts five nucleotides to the left of the upper sequence and one nucleotide to the left of the lower sequence. This enabled us to deduce the following recognition and cleavage specificity of Eco31I: 5 ′ G G T C T C N ↓ 3 ′ C C A G A G N N N N N ↑  相似文献   

19.
A comparison of the genes encoding the CD1 leucocyte differentiation antigens in man and mouse shows important differences which prompted us to analyze theCD1 genes of the rabbit. We have found that the rabbit genome contains multipleCD1 loci. Upon cloning and sequencing, one of these loci was found to encode the known rabbit CD1-like antigen (R-Ta) and to be closely related to the humanCD1b gene, which is absent in the mouse, while a second rabbit gene is closely related to both the humanR3 and the mouseCD1 genes. The data reinforce the notion of the existence of two classes ofCD1 genes, one of which is conserved in all species, while the other, albeit also evolutionarily old, has been deleted in mice as well as in other rodents. The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M26248 and M26249.  相似文献   

20.
The nucleotide sequence data reported in this Papershave been submitted to the GenBank, EMBL, and DDBJ nucleotide sequence databases and have been assigned the accession numbers X79719 (RT1.A 1), X79720 (RT1.C 1), and X79721 (RT12.5)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号