首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.  相似文献   

2.
Induction of DSBs in the diploid yeast, Saccharomyces cerevisiae, was measured by pulsed-field gel electrophoresis (PFGE) after the cells had been exposed on membrane filters to a variety of energetic heavy ions with values of linear energy transfer (LET) ranging from about 2 to 11,500 keV/microm, (241)Am alpha particles, and 80 keV X rays. After irradiation, the cells were lysed, and the chromosomes were separated by PFGE. The gels were stained with ethidium bromide, placed on a UV transilluminator, and analyzed using a computer-coupled camera. The fluorescence intensities of the larger bands were found to decrease exponentially with dose or particle fluence. The slope of this line corresponds to the cross section for at least one double-strand break (DSB), but closely spaced multiple breaks cannot be discriminated. Based on the known size of the native DNA molecules, breakage cross sections per base pair were calculated. They increased with LET until they reached a transient plateau value of about 6 x 10(-7) microm(2) at about 300-2000 keV/microm; they then rose for the higher LETs, probably reflecting the influence of delta electrons. The relative biological effectiveness for DNA breakage displays a maximum of about 2.5 around 100-200 keV/microm and falls below unity for LET values above 10(3) keV/microm. For these yeast cells, comparison of the derived breakage cross sections with the corresponding cross section for inactivation derived from the terminal slope of the survival curves shows a strong linear relationship between these cross sections, extending over several orders of magnitude.  相似文献   

3.
The signaling cascade initiated in response to DNA double-strand breaks (DSBs) has been extensively investigated in interphase cells. Here, we show that mitotic cells treated with DSB-inducing agents activate a “primary” DNA damage response (DDR) comprised of early signaling events, including activation of the protein kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK), histone H2AX phosphorylation together with recruitment of mediator of DNA damage checkpoint 1 (MDC1), and the Mre11–Rad50–Nbs1 (MRN) complex to damage sites. However, mitotic cells display no detectable recruitment of the E3 ubiquitin ligases RNF8 and RNF168, or accumulation of 53BP1 and BRCA1, at DSB sites. Accordingly, we found that DNA-damage signaling is attenuated in mitotic cells, with full DDR activation only ensuing when a DSB-containing mitotic cell enters G1. Finally, we present data suggesting that induction of a primary DDR in mitosis is important because transient inactivation of ATM and DNA-PK renders mitotic cells hypersensitive to DSB-inducing agents.  相似文献   

4.
5.
Bhuiyan H  Schmekel K 《Genetics》2004,168(2):775-783
Proper chromosome segregation and formation of viable gametes depend on synapsis and recombination between homologous chromosomes during meiosis. Previous reports have shown that the synaptic structures, the synaptonemal complexes (SCs), do not occur in yeast cells with the SPO11 gene removed. The Spo11 enzyme makes double-strand breaks (DSBs) in the DNA and thereby initiates recombination. The view has thus developed that synapsis in yeast strictly depends on the initiation of recombination. Synapsis in some other species (Drosophila melanogaster and Caenorhabditis elegans) is independent of recombination events, and SCs are found in spo11 mutants. This difference between species led us to reexamine spo11 deletion mutants of yeast. Using antibodies against Zip1, a SC component, we found that a small fraction (1%) of the spo11 null mutant cells can indeed form wild-type-like SCs. We further looked for synapsis in a spo11 mutant strain that accumulates pachytene cells (spo11Delta ndt80Delta), and found that the frequency of cells with apparently complete SC formation was 10%. Other phenotypic criteria, such as spore viability and homologous chromosome juxtaposition measured by FISH labeling of chromosomal markers, agree with several previous reports of the spo11 mutant. Our results demonstrate that although the Spo11-induced DSBs obviously promote synapsis in yeast, the presence of Spo11 is not an absolute requirement for synapsis.  相似文献   

6.
7.
Shinohara M  Sakai K  Ogawa T  Shinohara A 《Genetics》2003,164(3):855-865
We show here that deletion of the DNA damage checkpoint genes RAD17 and RAD24 in Saccharomyces cerevisiae delays repair of meiotic double-strand breaks (DSBs) and results in an altered ratio of crossover-to-noncrossover products. These mutations also decrease the colocalization of immunostaining foci of the RecA homologs Rad51 and Dmc1 and cause a delay in the disappearance of Rad51 foci, but not of Dmc1. These observations imply that RAD17 and RAD24 promote efficient repair of meiotic DSBs by facilitating proper assembly of the meiotic recombination complex containing Rad51. Consistent with this proposal, extra copies of RAD51 and RAD54 substantially suppress not only the spore inviability of the rad24 mutant, but also the gamma-ray sensitivity of the mutant. Unexpectedly, the entry into meiosis I (metaphase I) is delayed in the checkpoint single mutants compared to wild type. The control of the cell cycle in response to meiotic DSBs is also discussed.  相似文献   

8.
G Ira  E Svetlova    J Filipski 《Nucleic acids research》1998,26(10):2415-2419
Meiotic recombination in the yeast Saccharomyces cerevisiae is initiated by double-strand breaks (DSB) in chromosomal DNA. These DSB, which can be mapped in the rad 50S mutant yeast strain, are caused by a topoisomerase II-like enzyme, the protein Spo11. Evidence suggests that this protein is located in the axial element of the meiotic chromosome which implies that the DSB are located in these chromosomes in the vicinity of the bases of the DNA loops. We have found that in the yeast artificial chromosomes carrying human DNA, at the level of resolution obtained by pulsed field gel electrophoresis (PFGE), the meiotic DSB in the diploid yeast are co-localized with the DNase I hypersensitive sites (HS) in a haploid strain of yeast. These HS are located close to sequences which, under stress, have the potential to form secondary structures containing unpaired nucleotides. Clusters of such sequences could be a hallmark of the bases of the chromatin loops.  相似文献   

9.
A problem often overlooked in the study of the repair of radiation-induced DNA double-strand breads (DSBs) is the question of what the status of a regular site is in the DNA duplex immediately after a radiation treatment. Here, we suggest a mixed repair mechanism which consists of a gradual process and an instantaneous process. A comparison of the present kinetic model with those which have appeared in the literature shows that the former is a generalization of the latter. We have shown that different repair mechanisms may lead to equivalent mathematical representations. Therefore, care must be taken in interpreting the repair mechanism on the basis of the experimentally observed transient number of DSBs.  相似文献   

10.
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.  相似文献   

11.
12.
Repair of chromosome double-strand breaks (DSBs) is central to cell survival and genome integrity. Nonhomologous end joining (NHEJ) is the major cellular repair pathway that eliminates chromosome DSBs. Here we report our genetic screen that identified Rsc8 and Rsc30, subunits of the Saccharomyces cerevisiae chromatin remodeling complex RSC, as novel NHEJ factors. Deletion of RSC30 gene or the C-terminal truncation of RSC8 impairs NHEJ of a chromosome DSB created by HO endonuclease in vivo. rsc30Delta maintains a robust level of homologous recombination and the damage-induced cell cycle checkpoints. By chromatin immunoprecipitation, we show recruitment of RSC to a chromosome DSB with kinetics congruent with its involvement in NHEJ. Recruitment of RSC to a DSB depends on Mre11, Rsc30, and yKu70 proteins. Rsc1p and Rsc2p, two other RSC subunits, physically interact with yKu80p and Mre11p. The interaction of Rsc1p with Mre11p appears to be vital for survival from genotoxic stress. These results suggest that chromatin remodeling by RSC is important for NHEJ.  相似文献   

13.
Affinity purification of the yeast 19S proteasome revealed the presence of Sem1 as a subunit. Its human homolog, DSS1, was found likewise to copurify with the human 19S proteasome. DSS1 is known to associate with the tumor suppressor protein BRCA2 involved in repair of DNA double-strand breaks (DSBs). We demonstrate that Sem1 is required for efficient repair of an HO-generated yeast DSB using both homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways. Deletion of SEM1 or genes encoding other nonessential 19S or 20S proteasome subunits also results in synthetic growth defects and hypersensitivity to genotoxins when combined with mutations in well-established DNA DSB repair genes. Chromatin immunoprecipitation showed that Sem1 is recruited along with the 19S and 20S proteasomes to a DSB in vivo, and this recruitment is dependent on components of both the HR and NHEJ repair pathways, suggesting a direct role of the proteasome in DSB repair.  相似文献   

14.
Mutations in RecQL4 are a causative factor in Rothmund–Thomson syndrome, a human autosomal recessive disorder characterized by premature aging. To study the role of RecQL4, we employed a cell-free experimental system consisting of Xenopus egg extracts. RecQL4 loading onto chromatin was observed regardless of the presence or absence of EcoRI. However, in the absence of EcoRI, RecQL4 loading was suppressed by geminin, an inhibitor of pre-replicative complex formation, while in the presence of EcoRI, it was not affected. These results suggest that under the former condition, RecQL4-loading depended on DNA replication, while under the latter, the interaction occurred in response to double-stranded DNA breaks (DSBs) induced by EcoRI. DSB-induced RecQL4 loading depended on the function of the ataxia-telangiectasia mutated protein, DNA-dependent protein kinase (DNA-PK), and replication protein A, while there were only minor changes in DNA replication-associated RecQL4 loading upon suppression of these proteins. Furthermore, analyses using a chromatin-immunoprecipitation assay and quantification of γH2AX after induction of DSBs suggested that RecQL4 is loaded adjacent to Ku heterodimer-binding sites on damaged chromatin, and functions in the repair of DSBs.  相似文献   

15.
Experiments are described in which the feasibility of using caged dideoxy and other nucleoside triphosphate analogues for trapping breaks induced by u.v. radiation damage to mammalian cell DNA is evaluated. These nucleotide analogues that have a photolabile 1-(2-nitrophenyl)ethyl-protecting group attached to the gamma-phosphate are placed in situ by permeabilizing cells by exposure to hypo-osmotic medium. The nucleoside triphosphate is released from the cage by a 351 nm u.v. laser pulse whence it may incorporate in the growing chain of DNA induced by the excision-repair process and terminate chain elongation. If the photoreleased dideoxynucleoside triphosphate is isotopically labelled in the alpha-phosphate position the break is trapped and labelled. Incorporation of radioactivity into trichloroacetic acid insoluble material in these experiments confirms their potential for use in studies of the kinetics of mammalian cell DNA repair.  相似文献   

16.
DNA双链断裂修复与重症联合免疫缺陷   总被引:1,自引:0,他引:1  
Wang KY  Zhao YH  Li WG 《生理科学进展》2008,39(2):182-184
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).  相似文献   

17.
In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50°C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of 'naked' or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8-24 h in vitro incubation at 37°C or 50°C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37°C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization.  相似文献   

18.
Decottignies A 《Genetics》2005,171(4):1535-1548
Proper repair of DNA double-strand breaks (DSBs) is necessary for the maintenance of genomic integrity. Here, a new simple assay was used to study extrachromosomal DSB repair in Schizosaccharomyces pombe. Strikingly, DSB repair was associated with the capture of fission yeast mitochondrial DNA (mtDNA) at high frequency. Capture of mtDNA fragments required the Lig4p/Pku70p nonhomologous end-joining (NHEJ) machinery and its frequency was highly increased in fission yeast cells grown to stationary phase. The fission yeast Mre11 complex Rad32p/Rad50p/Nbs1p was also required for efficient capture of mtDNA at DSBs, supporting a role for the complex in promoting intermolecular ligation. Competition assays further revealed that microsatellite DNA from higher eukaryotes was preferentially captured at yeast DSBs. Finally, cotransformation experiments indicated that, in NHEJ-deficient cells, capture of extranuclear DNA at DSBs was observed if homologies--as short as 8 bp--were present between DNA substrate and DSB ends. Hence, whether driven by NHEJ, microhomology-mediated end-joining, or homologous recombination, DNA capture associated with DSB repair is a mutagenic process threatening genomic stability.  相似文献   

19.
《Reproductive biology》2022,22(1):100603
DNA double-strand break (DSB) repair is crucial to maintain genomic stability for sufficient ovarian reserve. It remains unknown the changes of DSBs formation and DNA repair in germ cells during ovarian reserve formation in FVB/N mice. We demonstrated germ cell numbers increased significantly (all P < 0.05) from E11.5 to E13.5 and decreased significantly (all P> 0.05) until P2. OCT4 and SOX2 analyses indicated pluripotency peaks at E13.5 then decreases significantly (all P 0.05) until P2. γH2AX analyses revealed DSB formation significantly (P < 0.05) increased from E13.5 until P2. RAD51 and DMC1 data revealed homologous recombination (HR) pathway repair of DSBs is persistent active during meiosis (E13.5- P2) (all P> 0.05). 53BP1 and KU70 data indicate the non-homologous end-joining pathway (NHEJ) remains active during meiosis. 53BP1 expression was highest at E13.5 (P < 0.05). KU70 expression was higher in germ cells from E15.5 to P2 (all < P 0.05). PH3 and KI67 analyses revealed germ cell proliferation was not significantly different (all P> 0.05) from E13.5 to P2. Caspase-3 and TUNEL analyses showed germ cells apoptosis was not significantly different (all P > 0.05) from E13.5 to P2. In conclusion, we found both germ cell number and pluripotency peak at E13.5 and decline during meiosis. We demonstrated HR and NHEJ continually repair DSBs during meiosis. RAD51 and DMC1 are continuously expressed during meiosis. 53BP1 is mainly expressed at E13.5. KU70 continually functions from E15.5 to P2. Proliferating and apoptotic cells were rarely detected during meiosis. Results provide a basis for further study of how DSBs and DNA repair affect germ cell development.  相似文献   

20.
Xrs2 is a member of the MRX complex (Mre11/Rad50/Xrs2) in Saccharomyces cerevisiae. In this study we demonstrate the important role of the MRX complex and in more detail of Xrs2 for the repair of radiation-induced chromosomal double-strand breaks by pulsed field gel electrophoresis. By using a newly designed in vivo plasmid-chromosome recombination system, we could show that gap repair efficiency and the association with crossovers were reduced in the MRX null mutants, but repair accuracy was unaffected. For these processes, an intact Mre11-binding domain of Xrs2 is crucial, whereas the FHA- and BRCT-domains as well as the Tel1-binding domain of Xrs2 are dispensable. Obviously, the Mre11-binding domain of the Xrs2 protein is crucial for the analysed functions and our results suggest a new role of the MRX complex for the formation of crossovers. Analysis of double mutants showed that the phenotype of the Deltaxrs2 null mutant concerning the crossover frequency is dominant over the phenotypes of Deltasrs2 and Deltasgs1 null mutants. Thus, the complex seems to be involved in early steps of double-strand break and gap repair, and we propose that it has a regulatory role for the selection of homologous recombination pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号