首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanosine diphosphate d-glucose:d-glucose-6-phosphate 1-glucosyl-transferase was purified approximately 100-fold from extracts of Streptomyces hygroscopicus. The purified enzyme catalyzed the transfer of glucose from guanosine diphosphate-d-glucose to glucose-6-phosphate to form trehalose phosphate and guanosine diphosphate. The enzyme was specific for these two substrates and was stimulated by the addition of magnesium ions. The product was characterized as alpha-alpha-trehalose-6-phosphate by its physical and chemical properties. The enzyme was present in a large number of Streptomyces species, suggesting that this group of organisms synthesized trehalose phosphate in a unique manner. This enzyme was not detected in fungi, since these organisms utilized uridine diphosphate-d-glucose as the glucosyl donor.  相似文献   

2.
The enzyme catalyzing the transfer of glucose from uridine diphosphate glucose to indoxyl yielding the indoxyl glucoside indican was isolated from Baphicacanthus cusia Bremek (Acanthaceae). The indoxyl-uridine diphosphate glucose (UDPG)-glucosyltransferase was purified to homogeneity in six chromatographic steps. The decisive step for the recovery of a homogeneous enzyme was the application of immobilized metal affinity chromatography yielding an 863-fold purified enzyme. From a total of 60 substances tested, in addition to the natural substrate 3-OH-indole (indoxyl), only 4-OH-, 5-OH-, 6-OH-, and 7-OH-indole were accepted as substrates by the glucosyltransferase. However, the latter substrates were metabolized to varying extent. The optimum pH of the enzyme was 8.5, the optimum temperature was 30 degrees C and the isoelectric point was pH 6.5. The M(r) of the enzyme was determined to be 60 +/- 2 x 10(3). Indoxyl as substrate yielded a K(m) of 1.2 mM, while a K(m) of 1.7 mM was found for UDPG.  相似文献   

3.
Uridine diphosphate D-glucose dehydrogenase of Aerobacter aerogenes   总被引:1,自引:0,他引:1  
Uridine diphosphate d-glucose dehydrogenase (EC 1.1.1.22) from Aerobacter aerogenes has been partially purified and its properties have been investigated. The molecular weight of the enzyme is between 70,000 and 100,000. Uridine diphosphate d-glucose is a substrate; the diphosphoglucose derivatives of adenosine, cytidine, guanosine, and thymidine are not substrates. Nicotinamide adenine dinucleotide (NAD), but not nicotinamide adenine dinucleotide phosphate, is active as hydrogen acceptor. The pH optimum is between 9.4 and 9.7; the K(m) is 0.6 mm for uridine diphosphate d-glucose and 0.06 mm for NAD. Inhibition of the enzyme by uridine diphosphate d-xylose is noncooperative and of mixed type; the K(i) is 0.08 mm. Thus, uridine diphosphate d-glucose dehydrogenase from A. aerogenes differs from the enzyme from mammalian liver, higher plants, and Cryptococcus laurentii, in which uridine diphosphate d-xylose functions as a cooperative, allosteric feedback inhibitor.  相似文献   

4.
利用生物酶进行体外催化反应合成不同种类的尿苷二磷酸糖(uridine diphosphate sugar,UDP-糖),生物酶的重复利用率较低。为提高尿苷二磷酸糖的合成效率及增加产物种类,以镍螯合聚丙烯酸酯树脂为载体,对带有HIS标签的N-乙酰己糖胺激酶(N-acetylhexosamine kinase,NahK)和尿苷转移酶(uridine transferase,GlmU)进行固定化。以固定化NahK和固定化GlmU为催化酶,不同单糖作为底物,研究尿苷二磷酸糖的一锅法合成情况。利用Q柱对产物进行纯化,通过高效液相色谱法、质谱法、核磁共振氢谱法对反应产物进行检测。确定了镍螯合聚丙烯酸酯树脂对游离NahK和GlmU的实际载量分别为10和20 mg·g-1。固定化酶量的最优配比为5.5 g固定化NahK和2.5 g固定化GlmU。固定化酶的最适pH和温度分别为8.0和35℃,且能在重复反应中稳定反应5个批次。葡萄糖、N-乙酰氨基葡萄糖和甘露糖可以参与一锅法反应,生成UDP-糖的相对分子质量分别为566、607、566,而葡萄糖醛酸、半乳糖和果糖在该体系下不能合成相应的UDP-糖。基于固定化酶技术,一锅法可合成UDP-葡萄糖、UDP-N-乙酰氨基葡萄糖、UDP-甘露糖。  相似文献   

5.
Cytosolic uridine 5'-diphosphoglucuronic acid is the essential cosubstrate for all hepatic microsomal UDP-glucuronosyltransferase-mediated reactions. Uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) has been implicated as an activator of UDP-glucuronosyltransferases in vivo, acting either as an allosteric effector or by enhancing access of uridine 5'-diphosphoglucuronic acid to the enzyme. To delineate the interaction of uridine 5'-diphosphoglucuronic acid with microsomal UDP-glucuronosyltransferase and the facilitating role of UDP-GlcNAc, we analyzed bilirubin UDP-glucuronosyltransferase kinetics in microsomes prepared from monkey liver (Macaca fascicularis). Initial rates of bilirubin glucuronide formation were determined by radiochemical assay over a range of uridine 5'-diphosphoglucuronic acid concentrations (0-60 mM), in native microsomes with or without UDP-GlcNAc, or in detergent (digitonin)-pretreated membranes with UDP-GlcNAc. For native microsomes in the absence of UDP-GlcNAc, fitting the data to each of two mathematical models yielded behavior consistent with a single-site model (Km 2.8 mM). In contrast, in the presence of a physiologic concentration (1 mM) of UDP-GlcNAc, analysis of the data excluded the single-site model and was indicative of a non-interactive, two-site (or process) model, characterized by a high-affinity site (Km 0.14 mM) in addition to the low-affinity site. Following detergent-treatment of microsomal membranes, the data were again most consistent with a single low-affinity site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A human liver microsomal UDP glucuronosyltransferase (UDPGT) that demonstrates reactivity with estriol (pI 7.4 UDPGT) has been purified to homogeneity and characterized further. No activity toward morphine, 4-hydroxybiphenyl, bilirubin, or tripelennamine was observed. The estriol UDPGT shows immunoreactivity with antibodies raised against rat hepatic microsomal 3 alpha- and 17 beta-hydroxysteroid UDPGTs but not with antibodies raised against rat hepatic microsomal p-nitrophenol UDPGT. The NH2-terminal sequence of the purified protein was determined and found to correspond to an identical sequence in the deduced amino acid sequence of a cDNA obtained from a human liver library in lambda gt11 (HLUG4). Sequence analysis revealed that HLUG4 is 2094 bp in length and encodes a protein of 523 amino acids which has a 16 amino acid leader sequence, followed by an untranslated 3' region of 525 bp. Three potential N-glycosylation sites were identified in the predicted sequence. The deduced amino acid sequence of estriol UDPGT showed 82% identity with the deduced amino acid sequence of another human hepatic cDNA (HLUG25), which has been expressed as a UDPGT capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid, strongly suggesting that these proteins are members of the same gene subfamily.  相似文献   

7.
GLUCURONYL transferase (EC 2.4.1.17) catalyses the transfer of glucuronic acid from uridine diphosphate glucuronic acid to a variety of amine, phenolic and carboxylic aglycones. Although this microsomal enzyme is found in the kidney and the gastrointestinal tract, the liver is the primary site of glucur-onide formation1. In the normal physiological state bilirubin is the principal substrate of this enzyme. Bilirubin must be conjugated with glucuronic acid to be transported from the liver cells to the bile.  相似文献   

8.
The biosynthesis of uridine diphosphate N-acetyl-D-mannosaminuronic acid from uridine diphosphate N-acetyl-D-glucosamine occurs in two steps. The enzyme responsible for the first step, the epimerization of uridine diphosphate N-acetyl-D-glucosamine to uridine diphosphate N-acetyl-D-mannosamine, is separated by means of hydroxylapatite chromatography from the enzyme for the second step, the NAD-linked dehydrogenation of uridine diphosphate N-acetyl-D-mannosamine. At equilibrium of the epimerase reaction, the ratio of the glucosamine residue to the mannosamine residue is about 9:1.  相似文献   

9.
The conversion of uridine diphosphate N-acetyl-D-glucosamine into uridine diphosphate N-acetyl-L-fucosamine was demonstrated with enzymes from cytoplasmic fraction of Salmonella arizonae O:59 cells in the presence of NAD+ (NADP+) and NADPH. The reaction product was identified by ion-pair, reverse-phase HPLC with the use of synthetic nucleoside diphosphate sugar standards under conditions specially developed for separation of uridine diphosphate 2-acetamido-2,6-dideoxyhexoses. L-Fucose dehydrogenase from porcine liver was shown to be applicable for determination of N-acetyl-L-fucosamine, this enzyme being used to confirm L-configuration of the amino sugar residue in the sugar nucleotide formed.  相似文献   

10.
An enzyme system catalyzing the synthesis of thiamin triphosphate consists of an enzyme (protein-bound thiamin diphosphate:ATP phosphoryltransferase), thiamin diphosphate bound to a macromolecule as substrate, ATP, Mg2+, and a low molecular weight cofactor. This system was established by combining a purified enzyme and an essentially pure, macromolecule-bound substrate prepared from rat livers. This macromolecule was found to be a protein, and the transphosphorylation of thiamin diphosphate to thiamin triphosphate with ATP and enzyme was shown to occur on this macromolecule which binds thiamin diphosphate. Free thiamin, thiamin monophosphate, thiamin diphosphate, and thiamin triphosphate have no effect on this reaction. Thus, the overall reaction is: thiamin diphosphate-protein + ATP in equilibrium thiamin triphosphate-protein + ADP. So-called thiamin diphosphate:ATP phosphoryltransferase (EC 2.7.4.15) activity was not detected in rat brain or liver. The enzyme was extracted from acetone powder of a crude mitochondrial fraction of bovine brain cortex and purified to homogeneity with a 0.6% yield after DEAE-cellulose chromatography, a first gel filtration, hydroxylapatite chromatography, chromatofocusing, and a second gel filtration. The purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Its molecular weight was estimated to be 103,000. The pH optimum was 7.5, and the Km was determined to be 6 X 10(-4) M for ATP. ATP was found to be the most effective phosphate donor among the nucleoside triphosphates. Amino acid analysis of the purified enzyme revealed an abundance of glutaminyl, glutamyl, and aspartyl residues. Sulfhydryl reagents inhibited the enzyme reaction. Metals such as Fe2+, Zn2+, Pb2+, and Cu2+ strongly inhibited the activity. The enzyme was unstable, and glycerol (20%) and dithiothreitol (1.0 mM) were found to preserve the enzyme activity.  相似文献   

11.
Ordin L  Hall MA 《Plant physiology》1967,42(2):205-212
Particulate cell wall polysaccharide synthetase from oat coleoptiles could use either guanosine diphosphate glucose or uridine diphosphate glucose; the latter was a much more effective glucose donor. The neutral polymer derived from uridine diphosphate glucose utilization yielded, after cellulase digestion, mostly cellobiose and to a lesser extent a substance tentatively identified as a mixed-linkage β1,4 = β1,3-trisaccharide; only cellobiose was found after guanosine diphosphate glucose utilization. The uridine diphosphate glucose utilizing system was inactivated by peroxyacetyl nitrate treatment of intact tissue and to a lesser extent by ozone treatment suggesting that this system is a possible site of interference with cellulose and non-cellulosic glucan biosynthesis in vivo. Direct treatment of the enzyme in vitro by peroxyacetyl nitrate, iodoacetamide or p-chloromercuribenzoate also inactivated the enzyme, indicating that the mechanism of inactivation possibly involves reaction with sulfhydryl groups.  相似文献   

12.
Similarities in properties of ribulose diphosphate carboxylase and oxygenase activities further substantiate the hypothesis that the same protein catalyzes both reactions. The Km (ribulose diphosphate) is 0.33 mM for the ribulose diphosphate oxygenase, when assayed in air with an oxygen electrode. Maximum activity is obtained with 10 to 35 mM MgCl2. Higher MgCl2 concentrations are inhibitory, but they shift the pH optimum from 9.3 or 9.4 to 8.7 or 9.0. MnCl2 is an effective cofactor of the oxygenase and some activity is obtained with CoCl2. Both the ribulose diphosphate carboxylase and oxygenase activity of the purified protein from spinach leaves are slowly inactivated by storage at 0 degrees and reactivated in 10 min at 50 degrees, provided both 25 mM MgCl2 and 1 mM dithiothreitol are present. The sulfhydryl groups of the enzyme which react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) are approximately 4 at pH 7.8 and 11 at pH 9.4. At both pH values ribulose diphosphate prevents two of these sulfhydryl groups from reacting with this reagent. About 50% inhibition of the oxygenase activity at pH 9.0 occurs with 50 mM bicarbonate in the presence of 3 mM ribulose diphosphate, and from variations in these parameters the inhibition is attributed to the CO2 species. The purified enzyme of acrylamide gels prevented the reduction of nitroblue tetrazolium in the presence of the superoxide radical, but the enzyme in solution did not react as a superoxide dismutase.  相似文献   

13.
Galactose-1-phosphate uridyltransferase (EC 2.7.7.10), responsible for the conversion of galactose-1-phosphate (Gal-1-P) to uridine diphosphate galactose (UDPgal) was examined in fruit peduncles of Cucumis sativus L. Two uridyltransferases (pyrophosphorylases), from I and II, were partially purified and resolved on a diethylamino-ethyl-cellulose column. Form I can utilize glucose-1-phosphate (Glc-1-P), while form II can utilize either Gal-1-P or Glc-1-P, with a preference for Gal-1-P. Form I was more heat stable than form II. Both Glc-1-P and Gal-1-P activities of form II were inactivated at the same rate by heating. The finding of a uridyltransferase with preference for Gal-1-P indicates that cucumber may have a Gal-1-P uridyltransferase (pyrophosphorylase) pathway for the catabolism of stachyose in the peduncles. The absence of the enzyme UDP-glucose-hexose-1-phosphate uridyltransferase (EC 2.7.7.12) in this tissue rules out catabolism by the classical Leloir pathway. The incorporation of carbon from UDPglc into Glc-1-P as opposed to sucrose may be regulated by the activities of the uridyltransferases. Pyrophosphate, in the same concentration range, inhibits UDP-gal formation (Ki=0.58±0.10 mM) and stimulates Glc-1-P formation. The ratio of units of pyrophosphatase to units of Gal-1-P uridyltransferase was higher in peduncles from growing fruit than from unpollinated fruit. Modulation of carbon partitioning through a uridyltransferase pathway may be a factor controlling growth of the cucumber fruit.Abbreviations Gal-1-P Galactose-1-phosphate - Glc-1-P glucose-1-phosphate - UDPgal uridine diphosphate galactose - UDPglc uridine diphosphate glucose Paper No. 6908 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned  相似文献   

14.
A glucosyltransferase which catalyzes the glucosylation of isoflavones in position 7 using uridine diphosphate glucose as glucosyl donor has been purified about 120-fold from 4-day-old roots of chick pea (Cicer arietinum L.). The soluble enzyme showed a pH optimum of 8.5–9.0 and a molecular weight of 50,000. The Km for uridine diphosphate glucose was 200 μm and for the isoflavones biochanin A and formononetin, 12 and 24 μm, respectively. While the aforementioned 4′-methoxy isoflavones were the best substrates, the 4′-hydroxy isoflavones genistein and daidzein were poor substrates. The enzyme was unable to catalyze the glucosylation of hydroxy substitutes isoflavanones, flavones, flavanones, flavonols, coumarins, cinnamic acids, and benzoic acids.  相似文献   

15.
An enzyme which catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate (TDP), thiamindiphosphate kinase (ATP:thiamin diphosphate phosphotransferase) [EC 2.7.4.15], was detected in animal tissues. The enzyme was partially purified (150-fold) from the cytosol fraction of guinea pig brain. The enzyme reaction required free (not protein-bound) TDP, ATP, Mg2+, and a cofactor, which is a low molecular weight and heat-stable compound. The enzyme activity was optimal at pH 11 and at 25 degrees C. A stoichiometric transfer of 32P from [gamma-32P]ATP to TDP was demonstrated. Km values for TDP and ATP were calculated to be 1.1 mM and 10 microM, respectively, and Vmax was 868 nmol/mg of protein/hr. The enzyme was found solely in the cytosol fraction of guinea pig brain and was also detectable in the skeletal muscle and heart. These results provide strong evidence for the existence of TDP kinase in animal tissues.  相似文献   

16.
17.
1. The main bilirubin conjugate in bile of spiny dogfish (Squalus Acanthias) and small skate (Raja Erinacea) is bilirubin monoglucuronide. 2. Microsomal preparations from dogfish and small skate liver have similar bilirubin UDPglucuronyltransferase (UDPGT) activity and catalyze the conjugation of bilirubin with glucose from UDPglucose. 3. The activity of bilirubin glucosidation (UDPGT) was 0.5 times UDPG1T activity in dogfish and 0.15 times in skate liver microsomes. 4. Sodium cholate increased UDPGT and UDPG1T activities in dogfish and skate liver microsomal preparations only minimally, but the detergent markedly increased thermolability of UDPGT in skate liver microsomes.  相似文献   

18.
Ribulose diphosphate carboxylase from autotrophic microorganisms   总被引:15,自引:9,他引:6       下载免费PDF全文
Thiobacillus denitrificans was grown anaerobically with nitrate as an acceptor in both sterile and nonsterile media. Ribulose diphosphate carboxylase was stable throughout the exponential growth phase and declined slowly only after cells reached the stationary phase. Reversible inactivation of the carboxylase occurred in extracts as a result of bicarbonate omission. The enzyme was purified 32-fold with excellent recovery of a preparation which was 50 to 60% pure by the criterion of polyacrylamide gel electrophoresis. This purified preparation catalyzed the fixation of 1.25 mumoles of CO(2) per min per mg of protein at pH 8.1 and 30 C, and the molecular weight of ribulose diphosphate carboxylase was approximately 350,000 daltons. A striking biphasic time course of CO(2) fixation that was independent of protein and ribulose diphosphate concentration was observed. The optimal pH of the enzyme assay was fairly broad, ranging from 7 to 8.2. Kinetic dependence upon bicarbonate, ribulose diphosphate, and Mg(2+) was characterized and indicated that bicarbonate and Mg(2+) must combine with enzyme prior to addition of ribulose diphosphate. Antiserum to ribulose diphosphate carboxylase from Hydrogenomonas eutropha was only slightly inhibitory when added to the enzyme from T. denitrificans, and the mixture did not precipitate. Cyanide (4 x 10(-5)m) gave 61% inhibition of the enzyme from T. denitrificans. Ribulose diphosphate carboxylase in extracts of H. eutropha, H. facilis, Chromatium D, Rhodospirillum rubrum, and Chlorella pyrenoidosa were also inhibited to varying extents by cyanide and antiserum to the H. eutropha enzyme.  相似文献   

19.
E Sanchez  T R Tephly 《Life sciences》1973,13(11):1483-1490
In rat liver microsomal preparations, bilirubin markedly stimulated the glucuronidation of morphine and p-nitrophenol catalyzed by UDPglucuronyltransferase (UDPGT, EC 2.4.1.17). The activation was not due to contamination of bilirubin with bile acids. At equimolar concentrations, the activating effect of bilirubin was greater than that produced by deoxycholate, a detergent well known as an activator of UDPGT. Other results suggest that bilirubin activation of UDPGT is similar to that produced by detergents. In in vivo experiments, the rate of urinary excretion of morphine glucuronide in rats treated with bilirubin was twice that of control animals. These results suggest that bilirubin may be a physiologic activator of UDPGT activity.  相似文献   

20.
Enzyme capable of catalyzing the phosphorylation of thymidine and uridine was isolated from Y. pseudotuberculosis cells by fractionation with the use of ammonium sulfate, ion exchange and affinity chromatography. The degree of purification of thymidine- and uridine-kinase was approximately 350 times, and at all stages of isolation the activity of both nucleoside-kinases was detected in the same peaks. The purified enzyme was capable of the phosphorylation of thymidine and uridine at temperatures of 8-10 degrees C to 50 degrees C and exhibited the maximum enzymatic activity at pH 8-8.5 and 45 degrees C in the presence of 0.5-1.0 mM MgCl2 and 2 mM ATP. The enzyme was found to have no strict substrate specificity and transferred the phosphate group from ATP to radiolabeled thymidine, uridine and desoxycytidine with different effectiveness, but did not use thymidine-monophosphate as phosphate acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号