首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

2.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   

3.
The reconstitution of solubilized bovine atrial cholinergic muscarinic receptor into liposomes made of exogenous lipids has been achieved by polyethyleneglycol precipitation. Of the different lipid mixtures used, soybean lecithins were shown to be the best on the basis of receptor recovery. The receptor reconsituted into soybean lecithins liposomes exhibited ligand binding properties very similar to those of the native receptor. The dissociation constant of [3H]-N-methyl-scopolamine ([3H]NMS) was 0.46 and 0.30 nM as determined by equilibrium and kinetics experiments respectively. The potency of a range of muscarinic ligands in displacing [3H]NMS binding was atropine > methyl-atropine > scopolamine > pirenzepine oxotremorine > gallamine > carbamylcholine > pilocarpine bethanechol. The Hill slopes of the displacement curves were near 1 for the antagonists and smaller than 1 for the agonists and for gallamine. The agonist binding may be modulated by guanine nucleotides. These results indicate that soybean lecithins fulfill the lipid requirements for the reconstitution of the atrial muscarinic receptor.  相似文献   

4.
Inhibitory effects of quinidine on rat heart muscarinic receptors   总被引:2,自引:0,他引:2  
Quinidine inhibited binding of the labelled agonist [3H]oxotremorine M [( 3H]Oxo-M) and the labelled antagonist [3H]N-methylscopolamine [( 3H]NMS) to rat heart muscarinic receptors. Kinetic studies demonstrated that quinidine decreased the association rates (I50: 4 and 7.5 microM) and dissociation rates (I50: 100 and 68 microM) of [3H]Oxo-M and [3H]NMS, with different potencies. These cooperative effects explained the low Hill coefficients and apparent selectivity of quinidine competition curves.  相似文献   

5.
The antagonist binding properties of rat pancreatic and cardiac muscarinic receptors were compared. In both tissues pirenzepine (PZ) had a low affinity for muscarinic receptors labelled by (3H)N-methylscopolamine [3)NMS) (KD values of 140 and 280 nM, respectively, in pancreatic and cardiac homogenates). The binding properties of pancreatic and cardiac receptors were, however, markedly different. This was indicated by different affinities for dicyclomine, (11-([(2-[diethylamino)-methyl)-1-piperidinyl] acetyl)-5, 11-dihydro-6H-pyrido(2,3-b)(1,4) benzodiazepin-6-on) (AFDX-116), 4-diphenylacetoxy-N-methyl-piperidine methobromide (4-DAMP) and hexahydrosiladifenidol (HHSiD). Pancreatic and cardiac muscarinic receptors also showed different (3H)NMS association and dissociation rates. These results support the concept of M2 receptor heterogeneity and confirm that M2 receptor subtypes have different binding kinetic properties.  相似文献   

6.
Muscarinic acetylcholine receptors (mAChRs) consisting of five known subtypes, are widely distributed in both central and peripheral nervous systems for regulation of a variety of critical functions. The present theoretical study describes correlations between experimental and calculated molecular properties of 15 α-substituted 2,2-diphenylpropionate antimuscarinics using quantum chemical and pharmacophore generation methods to characterize the drug mAChR properties and design new therapeutics. The calculated stereoelectronic properties, such as total energies, bond distances, valence angles, torsion angles, HOMO–LUMO energies, reactivity indices, vibrational frequencies of ether and carbonyl moieties, and nitrogen atom proton affinity were found to be well correlated when compared with experimentally determined inhibition constants from the literature using three muscarinic receptor assays: [3H]NMS receptor binding, α-amylase release from rat pancreas, and guinea pig ileum contraction. In silico predicted toxicity on rat oral LD50 values correlated well with the [3H]NMS binding in N4TG1 cells and α-amylase release assays, but not the ileum contraction assay. Next, to explore the functional requirements for potent activity of the compounds, we developed a preliminary 3D pharmacophore model using the in silico techniques. The resulting model contained a hydrogen bond acceptor site on the carbonyl oxygen atom and a ring aromatic feature on one of the two aromatic rings in these compounds. This model was used as a template to search an in-house database for novel analogs. We found compounds equal in inhibition potency to atropine and, importantly, six not reported before as antimuscarinics. These results demonstrate that this QSAR approach not only provides a basis for understanding the molecular mechanism of action but a pharmacophore to aid in the discovery and design of novel potent muscarinic antagonists.  相似文献   

7.
Muscarinic receptors were studied on lymphocytes from young and old Wistar rats. Binding studies were performed by the use of [3H]-QNB, a specific muscarinic antagonist. Some differences between these two groups were observed. Maximal binding of [3H]-QNB and half time of the maximal binding is lower for lymphocytes of old rats [3H]-QNB receptor complexes could not be found in the supernatants derived from lymphocytes of old animals. Higher ability to loose or hide the muscarinic receptors was also observed in this group of rats. All these observations could reflect a more effective degradation, as well as a lower level of muscarinic receptors exposed on lymphocytes from old animals.  相似文献   

8.
A series of achiral 3-heteroaryl substituted quinuclidin-2-ene derivatives and related compounds have been synthesized by facile methods. The compounds were evaluated for muscarinic and antimuscarinic properties in receptor binding studies using (-)-[3H]-QNB as the radioligand and in a functional assay using isolated guinea pig urinary bladder. 3-(2-Benzofuranyl)-quinuclidin-2-ene (15) displayed the highest M1-receptor affinity in the present series (Ki = 9.6 nM).  相似文献   

9.
Acetylcholine interacts with muscarinic receptors (M) to mediate gastrointestinal (GI) smooth muscle contractions. We have compared mRNA levels and binding sites of M(1)to M(5) in muscle tissues from fundus abomasi, pylorus, ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of healthy dairy cows. The mRNA levels were measured by quantitative RT-PCR. The inhibition of [(3)H]-QNB (1-quinuclidinyl-[phenyl-4-(3)H]-benzilate) binding by M antagonists [atropine (M(1 - 5)), pirenzepine (M(1)), methoctramine (M(2)), 4-DAMP (M(3)), and tropicamide (M(4))] was used to identify receptors at the functional level. Maximal binding (B(max)) was determined through saturation binding with atropine as a competitor. The mRNA levels of M(1), M(2), M(3), and M(5) represented 0.2, 48, 50, and 1.8%, respectively, of the total M population, whereas mRNA of M(4) was undetectable. The mRNA levels of M(2) and of M(3) in the ileum were lower (P < 0.05) than in other GI locations, which were similar among each other. Atropine, pirenzepine, methoctramine, and 4-DAMP inhibited [(3)H]-QNB binding according to an either low- or high-affinity receptor pattern, whereas tropicamide had no effect on [(3)H]-QNB binding. The [(3)H]-QNB binding was dose-dependent and saturable. B(max) in fundus, pylorus, and PLAC was lower (P < 0.05) than in the ELSC, and in the pylorus lower (P < 0.05) than in the ileum. B(max) and mRNA levels were negatively correlated (r = -0.3; P < 0.05). In conclusion, densities of M are different among GI locations, suggesting variable importance of M for digestive functions along the GI tract.  相似文献   

10.
Incubation of 1321N1 human astrocytoma cells with carbachol resulted in a rapid loss of binding of [3H]N-methylscopolamine ([3H]NMS) to muscarinic cholinergic receptors measured at 4 degrees C on intact cells; loss of muscarinic receptors in lysates from the same cells measured with [3H]quinuclidinyl benzilate [( 3H]QNB) at 37 degrees C occurred at a slower rate. Upon removal of agonist from the medium, the lost [3H]NMS binding sites measured on intact cells recovered with a t1/2 of approximately 20 min, but only to the level to which [3H]QNB binding sites had been lost; no recovery of "lost" [3H]QNB binding sites occurred over the same period. Based on these data and the arguments of Galper et al. (Galper, J. B., Dziekan, L. C., O'Hara, D. S., and Smith, T. W. (1982) J. Biol. Chem. 257, 10344-10356) regarding the relative hydrophilicity of [3H]NMS versus [3H]QNB, it is proposed that carbachol induces a rapid sequestration of muscarinic receptors that is followed by a loss of these receptors from the cell. These carbachol-induced changes are accompanied by a change in the membrane form of the muscarinic receptor. Although essentially all of the muscarinic receptors from control cells co-purified with the plasma membrane fraction on sucrose density gradients, 20-35% of the muscarinic receptors from cells treated for 30 min with 100 microM carbachol migrated to a much lower sucrose density. This conversion of muscarinic receptors to a "light vesicle" form occurred with a t1/2 approximately 10 min, and reversed with a t1/2 approximately 20 min. In contrast to previous results in this cell line regarding beta-adrenergic receptors (Harden, T. K., Cotton, C. U., Waldo, G. L., Lutton, J. K., and Perkins, J. P. (1980) Science 210, 441-443), agonist binding to muscarinic receptors in the light vesicle fraction obtained from carbachol-treated cells was still regulated by GTP. One interpretation of these data is that agonists induce an internalization of muscarinic receptors with the retention of their functional interaction with a guanine nucleotide regulatory protein.  相似文献   

11.
The mechanisms of carbachol-induced muscarinic acetylcholine receptor (mAChR) down-regulation, and recovery following carbachol withdrawal, were studied in the neuroblastoma x glioma hybrid NG108-15 cell line by specific ligand binding assays. N-[3H]Methylscopolamine ([3H]NMS) and [3H]quinuclidinyl benzilate ([3H]QNB) were used as the ligands for the cell surface and total cellular mAChRs, respectively. Exposure of cells to 1 mM carbachol for 16 h decreased the specific binding of [3H]NMS and [3H]QNB by approximately 80%. Bacitracin (1-4 mg/ml) and methylamine (1-15 mM), inhibitors of transglutaminase and of endocytosis, prevented agonist-induced loss of surface mAChRs. Pretreatment of cells with the antimicrotubular agents nocodazole (0.1-10 microM) and colchicine (1-10 microM) prevented carbachol-induced loss of [3H]QNB binding, but not that of [3H]NMS binding. These results indicate that agonist-induced mAChR down-regulation occurs by endocytosis, followed by microtubular transport of receptors to their intracellular degradation sites. When carbachol was withdrawn from the culture medium following treatment of cells for 16 h, receptors recovered and were incorporated to the surface membrane. This recovery process was antagonized by monovalent ionophores monensin (0.1 microM) and nigericin (40 nM), which interfere with Golgi complex function. Receptor recovery was also prevented by the antimicrotubular agent nocodazole. Thus, recovery of receptors appears to be mediated via Golgi complex and microtubular transport to the surface membrane.  相似文献   

12.
The activities of the enantiomers of BM-5 were examined to measure muscarinic cholinergic selectivity in the central nervous system. Autoradiographic studies assessed the ability of each enantiomer to inhibit the binding of [3H]-(R)-quinuclidinyl benzilate ([3H]-(R)-QNB) to muscarinic receptors in the rat brain. (+)-(R)-BM-5 inhibited [3H]-(R)-QNB binding to rat brain sections at concentrations below 1.0 microM, while 100-fold higher concentrations of (-)-(S)-BM-5 were required for comparable levels of inhibition. Analysis of the autoradiograms indicated that both stereoisomers had a similar distribution of high affinity binding sites. Each enantiomer displayed higher affinity for muscarinic receptors in the superior colliculi and lower affinity for receptors in the cerebral cortex and hippocampus. (+)-(R)-BM-5 and oxotremorine inhibited adenylyl cyclase activity in the cerebral cortex with efficacies comparable to that for acetylcholine. (+)-(R)-BM-5 was 26-fold more potent than (-)-(S)-BM-5 in inhibiting adenylyl cyclase. Oxotremorine-M and carbamylcholine stimulated phosphoinositide turnover in the cerebral cortex. Oxotremorine had lower activity and (+)-(R)-BM-5 was essentially inactive at comparable concentrations. The difference in activity of the two enantiomers indicates a remarkable stereochemical selectivity for muscarinic receptors. The stereoselectivity index is comparable for both the autoradiographic assays (48) and measures of adenylyl cyclase activity (26) in the cerebral cortex.  相似文献   

13.
S Nomura  S H Zorn  S J Enna 《Life sciences》1987,40(18):1751-1760
Experiments were undertaken to determine whether the anticholinergic actions of tricyclic antidepressants are mediated by a selective interaction with a subclass of muscarinic receptors. To this end, the potencies of these antidepressants to inhibit [3H]-QNB binding to rat brain cerebral cortical membranes was compared to their potencies as antagonists of carbachol-stimulated inositol phosphate accumulation in cerebral cortical slices and carbachol-induced inhibition of GTP-stimulated adenylate cyclase in striatal membranes. Whereas amitriptyline was more potent than pirenzepine, a selective muscarinic M1 receptor antagonist, in competing for [3H]-QNB binding sites and as an antagonist of carbachol-induced inhibition of adenylate cyclase, pirenzepine was substantially more active (ten-fold) than amitriptyline in blocking carbachol-stimulated phosphatidyl inositol turnover. Atropine was more potent than all other agents in these assays, failing to display any significant degree of selectivity. The results suggest that the tricyclic antidepressants, in particular amitriptyline, appear to be selective antagonists for muscarinic receptors associated with adenylate cyclase in striatal membranes. Given the current classification of cholinergic receptors, these findings indicate that the tricyclic antidepressants may be useful for defining the properties of M2 receptors in brain.  相似文献   

14.
We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Calmodulin (CaM) regulation of cholinergic muscarinic receptor was investigated using synaptic membrane isolated from rat brains and [3H]-QNB as a binding ligand. CaM exerts a biphasic effect on receptor binding showing both a Ca2+-dependent receptor loss and an increase depending on the state of membrane phosphorylation. Calcineurin, a CaM-dependent protein phosphatase, mimicked the stimulatory effect of CaM in a dose-dependent manner. CaM-antagonists, W-7 and TFP reversed the stimulatory effect by CaM. A mechanism of protein phosphorylation and dephosphorylation of the cholinergic muscarinic receptors regulated by CaM-Ca2+ was proposed.  相似文献   

16.
The antagonistic effects of gallamine on muscarinic receptor-linked responses were investigated in N1E-115 neuroblastoma cells. M1 muscarinic receptor-mediated phosphoinositide hydrolysis induced by carbamylcholine was antagonized by gallamine, with a Ki value of 33 microM. By comparison, gallamine was four- to fivefold less potent in blocking noncardiac M2 muscarinic receptor-mediated inhibition of cyclic AMP formation, with a Ki value of 144 microM. The resulting Arunlakshana-Schild plots of the antagonism of both responses by gallamine were linear and exhibited slopes not differing from 1, a result indicative of a competitive mechanism. To elucidate further the nature of gallamine's inhibitory actions, experiments were performed where the effects of gallamine in combination with the known competitive muscarinic antagonist, N-methylscopolamine (NMS), were studied. In the presence of both antagonists, a supraadditive shift in the carbamylcholine dose-response curve was demonstrated for the two responses, a result suggestive of an allosteric mode of interaction between gallamine and NMS binding sites. Confirmation that gallamine allosterically modifies the muscarinic receptor was provided by radioligand binding studies. Gallamine competition curves with either [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) or [N-methyl-3H]quinuclidinyl benzilate methyl chloride ([3H]NMeQNB) were unusually shallow. Furthermore, gallamine decelerated the rate of dissociation of receptor-bound [3H]NMS greater than [3H]NMeQNB in a dose-dependent manner. The present study demonstrates that whereas gallamine antagonizes carbamylcholine-mediated responses in N1E-115 cells in a competitive manner, an allosteric component of its action is revealed in the presence of muscarinic antagonists such as NMS.  相似文献   

17.
A novel muscarinic receptor antagonist, darifenacin, inhibited specific binding of [N-methyl-(3)H]scopolamine ([(3)H]NMS) in the mouse bladder, submaxillary gland and heart in a concentration-dependent manner. The inhibitory effect was most potent in the submaxillary gland, followed by the bladder and heart. In addition, darifenacin inhibited specific [(3)H]NMS binding in the membranes of CHO-K1 cell lines expressing muscarinic M(2) and M(3) receptor subtypes, and the potency was significantly (22-fold) greater at the M(3) than at the M(2) subtype. At 0.5 to 12 h after oral administration of darifenacin, a significant increase in K(d) values for specific [(3)H]NMS binding was seen in the bladder, submaxillary gland and lung of mice, compared with control values. Also, there was a sustained decrease in the B(max) values in the submaxillary gland. These data suggest that muscarinic receptor binding of oral darifenacin is rapid in onset and of a long duration. On the other hand, oral darifenacin exerted only temporary or little binding of muscarinic receptors in the heart and colon. Pilocarpine-induced salivary secretion in mice was continuously suppressed by oral darifenacin. The time-course of suppression coincided well with that for the muscarinic receptor binding in the submaxillary gland. The antagonistic effect of darifenacin against the dose-response curves for pilocarpine appeared to be insurmountable. In conclusion, the present study has shown that oral darifenacin may exert a pronounced and long-lasting binding of muscarinic receptors in tissues expressing the M(3) subtype.  相似文献   

18.
We recently demonstrated that the non-classical muscarinic receptor antagonist [3H]pirenzepine ([3H]PZ) identifies a high affinity population of muscarinic sites in the rat cerebral cortex. We now report that cortical muscarinic sites to which [3H]PZ binds with high affinity are modulated by ions but not guanine nucleotides. We also have examined equilibrium [3H]PZ binding in homogenates of various rat tissues using a new rapid filtration assay. All regional saturation isotherms yielded a similar high affinity dissociation constant (Kd = 2 ? 8 nM) in 10 mM sodium-potassium phosphate buffer. Receptor density (Bmax in fmol/mg tissue) varied as follows: corpus striatum = 154.5, cerebral cortex = 94.6, hippocampus = 94.3, ileum = 1.3, cerebellum = 1.0, and heart = 0.45. The cerebral cortex and hippocampus possess 61 percent of striatal binding sites, while the ileum, cerebellum and heart contain only 0.84 percent, 0.65 percent and 0.29 percent of striatal sites respectively. The [3H]PZ sites in heart, ileum, and cerebellum represent 3.1 percent, 9.6 percent, and 10.4 percent of the sites obtained by using [3H](?)quinuclidinyl benzilate. Thus, [3H]PZ labels high affinity muscarinic receptor binding sites with a tissue distribution compatible with the concept of distinct M1 and M2 receptor subtypes. Accordingly, regions such as heart, cerebellum, and ileum would be termed M2, though each have an extremely small population of the M1 high affinity [3H]PZ site. [3H]PZ therefore appears to be a useful ligand for M1 receptor identification. Furthermore, the inability to demonstrate a significant effect of guanine nucleotides upon high affinity [3H]PZ binding to putative M1 receptors suggests that M1 sites may be independent of a guanine regulatory protein.  相似文献   

19.
The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.  相似文献   

20.
Onali P  Adem A  Karlsson E  Olianas MC 《Life sciences》2005,76(14):1547-1552
The mamba toxin MT-7 is the most selective ligand currently available for the muscarinic M1 receptor subtype. The toxin binds stably to the receptor and blocks the agonist-induced activation non-competitively. Although its mode of action on M1 receptors is not yet fully understood, some of the toxin properties support an allosteric mechanism. Thus, the toxin fails to elicit a complete inhibition of the binding of either the muscarinic antagonist [3H]N-methyl-scopolamine ([3H]NMS) or the agonist [3H]acetylcholine ([3H]ACh). When added to ligand-occupied M1 receptors, the toxin slows the dissociation rate of [3H]NMS and increases that of [3H]ACh. Site-directed mutagenesis studies have provided important information about the toxin amino acid residues which are critical for the stable binding to the receptor and for the allosteric modulation of antagonist dissociation. In vivo studies have shown that the intracerebral injection of MT-7 causes a long-lasting blockade of M1 receptor, thus providing a tool for the characterization of the functional role of this receptor subtype in discrete brain areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号