首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Arginine-vasopressin (AVP) has been proposed to be involved in the modulation of acid-base transporters; however, the nature of the mechanisms underlying AVP direct action on intracellular pH (pH(i)) in the cortical collecting duct (CCD) is not yet clearly defined. The aim of the present study was to elucidate which are the proteins implicated in AVP modulation of pH(i), as well as the receptors involved in these responses using a CCD cell line (RCCD(1)); pH(i) was monitored with the fluorescent dye BCECF in basal conditions and after stimulation with basolateral 10(-8) M AVP. Specific V1- or V2-receptor antagonists were also used. RT-PCR studies demonstrated that RCCD(1) cells express V1a and V2 receptors. Functional studies showed that while V2-receptor activation induced a biphasic response (alkalinization-acidification), V1-receptor activation resulted in an intracellular acidification. The V2-mediated alkalinization phase involves the activation of basolateral NHE-1 isoform of the Na(+)/H(+) exchanger while in the acidification phase CFTR is probably implicated. On the other hand, V1-mediated acidification was due to activation of a Cl(-)/HCO(3)(-) exchanger. We conclude that in RCCD(1) cells AVP selectively activates, via a complex of V1 and V2 receptor-mediated actions, different ion transporters linked to pH(i) regulation which might have physiological implications.  相似文献   

2.
3.
Several isoforms of Na+/H+ exchanger (NHE-1–5) have been identified. LLC-PK1 clone 4 (CL4) expresses the amiloride-sensitive type of NHE predominantly in the basolateral membrane, which is believed to be NHE-1. It is not clear whether CL4 expresses NHE in the apical membrane and which side of NHE is encoded by the NHE-1 mRNA. Using acidified CL4 cells on the filter membrane, we examined Na+-dependent pH recovery of the apical and basolateral membranes separately. Na+ applied to the apical membrane recovered cell pH. Na+-dependent pH recovery in the apical membrane was not inhibited by SITS, DIDS, or contralateral amiloride. Li+ but not K+, chol+, or NMG+ could replace Na+. These data are consistent with the presence of NHE in the apical membrane. Transfection with an antisense oligonucleotide corresponding to the 5′ terminal site of NHE-1 cDNA of CL4 decreased NHE activity in the basolateral membrane but not in the apical membrane. We conclude that CL4 expresses NHE activities in both apical and basolateralmembranes and that NHE-1 mRNA encodes NHE only in the basolateral membrane. J. Cell. Physiol. 171:318–324, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Some epithelial cells have Na+/H+ exchanger (NHE) activity in both apical and basolateral membranes. Amiloride-sensitive NHE-1 is generally identified in the basolateral membrane. The renal cell line, OK7a, targets amiloride-resistant NHE predominantly to the apical membrane. It is controversial whether the transfected NHE-1 is targeted preferentially to the basolateral membrane in OK7a cells, when human NHE-1 is chronically expressed under control of constitutively active promoters. We tried to identify the membranes in which the transfected human NHE-1 could be detected following acute expression in OK7a cells. We have always observed small Na+-dependent pH recovery in the basolateral membrane in OK7a cells. It is, however, controversial whether or not OK7a cells express NHE activity in the basolateral membrane. We also characterized Na+-dependent pH recovery in the basolateral membrane. It was not inhibited by [4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid] (DIDS), [4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid] (SITS), or contralateral amiloride. Li+ but not K+, chol+, or NMG+ could replace Na+. These results are consistent with the presence of the NHE in the basolateral membrane. NHE activities were predominant in the apical membrane and those in both membranes were resistant to amiloride analogs. After stable transfection with human NHE-1 in a vector utilizing the metallothionein promoter, overnight induction with Zn2+ increased the NHE activity and its sensitivity to amiloride only in the basolateral membrane in OK7a cells. We conclude that the transfected human NHE-1 is exclusively targeted to the basolateral membrane of OK7a cells during acute induction. J Cell Physiol 178:44–50, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

5.
Na(+)/H(+) exchangers (NHE) are important membrane transport proteins involved in transepithelial transport and cellular pH homeostasis. NHE-1, important for cellular pH and volume homeostasis, is expressed in the basolateral membrane of epithelial cells. We evaluated the use of a multiwell-multilabel reader to investigate basolateral NHE-1 in confluent MDCK cells and compared the results with data obtained using an imaging system equipped with a filter perfusion system. Using the multiwell-multilabel reader we obtained virtually the same values for steady-state pH and NHE-1 activity under control conditions compared to the imaging system. With both setups Na(+)-dependent pH recovery after an acid load occurred virtually only after basolateral addition of Na(+). Furthermore, Na(+)-dependent pH recovery was reduced by >80% in the presence of the NHE-1 inhibitor HOE642. In addition, we detected an almost identical increase of NHE-1 activity with the two methods after stimulation of protein kinase C using phorbol myristate acetate. In summary, our data indicate that multiwell-multilabel readers are suitable to investigate physiology and regulation of basolateral NHE. Thus, multiwell-multilabel readers offer a valid and convenient alternative to investigate basolateral transporters.  相似文献   

6.
Na+/H+ exchange in vertebrates is thought to be electroneutral and insensitive to the membrane voltage. This basic concept has been challenged by recent reports of antiport-associated currents in the turtle colon epithelium (Post and Dawson, 1992, 1994). To determine the electrogenicity of mammalian antiporters, we used the whole-cell patch clamp technique combined with microfluorimetric measurements of intracellular pH (pHi). In murine macrophages, which were found by RT- PCR to express the NHE-1 isoform of the antiporter, reverse (intracellular Na(+)-driven) Na+/H+ exchange caused a cytosolic acidification and activated an outward current, whereas forward (extracellular Na(+)-driven) exchange produced a cytosolic alkalinization and reduced a basal outward current. The currents mirrored the changes in pHi, were strictly dependent on the presence of a Na+ gradient and were reversibly blocked by amiloride. However, the currents were seemingly not carried by the Na+/H+ exchanger itself, but were instead due to a shift in the voltage dependence of a preexisting H+ conductance. This was supported by measurements of the reversal potential (Erev) of tail currents, which identified H+ (equivalents) as the charge carrier. During Na+/H+ exchange, Erev changed along with the measured changes in pHi (by 60-69 mV/pH). Moreover, the current and Na+/H+ exchange could be dissociated. Zn2+, which inhibits the H+ conductance, reversibly blocked the currents without altering Na+/H+ exchange. In Chinese hamster ovary (CHO) cells, which lack the H+ conductance, Na+/H+ exchange produced pHi changes that were not accompanied by transmembrane currents. Similar results were obtained in CHO cells transfected with either the NHE-1, NHE-2, or NHE-3 isoforms of the antiporter, indicating that exchange through these isoforms is electroneutral. In all the isoforms tested, the amplitude and time- course of the antiport-induced pHi changes were independent of the holding voltage. We conclude that mammalian NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent. In cells endowed with a pH- sensitive H+ conductance, such as macrophages, activation of Na(+)-H+ exchange can modulate a transmembrane H+ current. The currents reported in turtle colon might be due to a similar "cross-talk" between the antiporter and a H+ conductance.  相似文献   

7.
8.
9.
The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have been identified in pancreatic tissue, but little is known about their individual functions in acinar cells. The Na+/H+ exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride completely blocked pHi recovery after an NH4Cl-induced acid challenge, confirming a general role for NHE in pHi regulation. The targeted disruption of the Nhe1 gene also completely abolished pHi recovery from an acid load in pancreatic acini in both HCO3--containing and HCO3--free solutions. In contrast, the disruption of either Nhe2 or Nhe3 had no effect on pHi recovery. In addition, NHE1 activity was upregulated in response to muscarinic stimulation in wild-type mice but not in NHE1-deficient mice. Fluctuations in pHi could potentially have major effects on Ca2+ signaling following secretagogue stimulation; however, the targeted disruption of Nhe1 was found to have no significant effect on intracellular Ca2+ homeostasis. These data demonstrate that NHE1 is the major regulator of pHi in both resting and muscarinic agonist-stimulated pancreatic acinar cells.  相似文献   

10.
11.
Apically expressed intestinal and renal sodium-hydrogen exchangers (NHEs) play a major role in Na(+) absorption. Our previous studies on NHE ontogeny have shown that NHE-2 and NHE-3 are expressed at very low levels in young animals. Furthermore, single and/or double NHE-2 and NHE-3 knockout mice display no obvious abnormalities before weaning. These observations suggest that other transporter(s) may be involved in intestinal Na+ absorption during early life. The present studies were designed to clone the novel rat intestinal NHE-8 cDNA and to decipher the NHE-8 protein localization and gene expression pattern during different developmental stages. The rat NHE-8 cDNA has 2,160 bp and encodes a 575-amino acid protein. An antibody against NHE-8 protein was developed. Immunohistochemistry staining indicated apical localization of NHE-8 protein in rat intestinal epithelial cells. The apical localization of NHE-8 was also confirmed by its presence in brush-border membrane and its absence in basolateral membrane preparations. Northern blotting utilizing a NHE-8-specific probe demonstrated higher NHE-8 mRNA expression in young animals compared with adult animals. Western blot analysis revealed a similar pattern. Tissue distribution with multiple human tissue RNA blot showed that NHE-8 was expressed in multiple tissues including the gastrointestinal tract. In conclusion, we have cloned the full-length NHE-8 cDNA from rat intestine and further showed its apical localization in intestinal epithelial cells. We have also shown that NHE-8 gene expression and protein expression were regulated during ontogeny. Our data suggests that NHE-8 may play an important role in intestinal Na+ absorption during early life.  相似文献   

12.
13.
Besides being a intracellular pH (pHi) regulator, Na+/H+ exchanger (NHE)1 has recently been postulated as a membrane scaffold that assembles protein complexes and coordinates various signaling pathways. The aim of the present study was to uncover NHE1 interactive partners and study their functional implications. NHE1 interactive partners were screened in the mouse brain with a signal transduction AntibodyArray. Ten of 400 tested proteins appeared to be potentially associated with NHE1. These partners have been shown to be involved in either cell proliferative or apoptotic pathways. The interactions between NHE1 and Src homology 2 domain-containing protein tyrosine phosphatase (SHP-2), Bin1, and heat shock protein (HSP)70 were reciprocally confirmed by coimmunoprecipitation. Moreover, in vitro binding data have shown that NHE1 COOH terminus interacts directly with SHP-2. The functional significance of the association between NHE1 and SHP-2 was further investigated by measuring pHi, cell proliferation, and cell death with the fluorescent dye BCECF, [3H]thymidine incorporation, and medium lactate dehydrogenase activity, respectively. Our results revealed that cells with SHP-2 overexpression exhibited a higher steady-state pHi and a faster, NHE1-dependent pHi recovery rate from acid load in HEPES buffer. In addition, SHP-2 overexpression diminished the HOE-642-induced inhibition of cell proliferation and protected cells from hypoxic injury, especially in the presence of HOE-642. Together, our findings demonstrate that SHP-2 not only is physically associated with NHE1 but also modulates NHE1 functions such as pHi regulation, cell proliferation, and cell death under hypoxia.  相似文献   

14.
15.
Bicarbonate and butyrate stimulate electroneutral Na absorption via apical membrane Na-H exchange (NHE) in rat distal colon. cAMP downregulates NHE-3 isoform and inhibits HCO3-dependent, but not butyrate-dependent, Na absorption. This study sought to determine whether 1) the apical membrane NHE-2 and NHE-3 isoforms differentially mediated HCO3- and butyrate-dependent Na absorption, and 2) cAMP had different effects on NHE-2 and NHE-3 isoforms. The effect of specific inhibitors of NHE-2 and NHE-3 isoforms (50 microM HOE 694 and 2 microM S3226, respectively) on unidirectional 22Na transepithelial fluxes performed across isolated mucosa from rat distal colon under voltage-clamp conditions was examined. HCO3 stimulation of Na absorption was inhibited by EIPA, a nonspecific inhibitor of all NHE isoforms, by S3226 and dibutyryl cAMP but not by HOE 694. In contrast, butyrate stimulation of Na absorption was not altered by dibutyryl cAMP and was not inhibited by HOE 694 in the absence of dibutyryl cAMP, but in the presence of dibutyryl cAMP was HOE694 sensitive. In contrast, S3226 inhibited butyrate-stimulated Na absorption in the absence of dibutyryl cAMP, but not in its presence. We conclude that 1) HCO3-stimulated Na absorption is mediated solely by NHE-3 isoform, whereas butyrate-stimulated Na absorption is mediated by either NHE-3 or NHE-2 isoform, and 2) dibutyryl cAMP selectively inhibits NHE-3 isoform but stimulates NHE-2 isoform. Dibutyryl cAMP does not inhibit butyrate-stimulated Na absorption as a result of its differential effects on NHE-2 and NHE-3 isoforms.  相似文献   

16.
17.
18.
Using an anti-NHE1 antibody, we demonstrate the presence of a Na+/H+ exchanger of isoform 1 (NHE1) in the human eccrine sweat duct. A strong staining was observed at the basolateral membrane of the outer cell layer (NHE1basal), at the junction between inner and outer cells layers (NHE1inter), and along the lateral membranes (NHE1later) of all cells of the duct. At the luminal membrane, no staining was demonstrated either for NHE1 or NHE3. To investigate Na+/H+ mediated proton transport, straight sweat duct portions were isolated and perfused in vitro under HCO3-free conditions. In the presence of basolateral 5-ethyl-N-isopropyl amiloride (EIPA), an acidification of 0.29 +/- 0.03 pH units was observed, whereas no effect was observed with luminal EIPA. Bath sodium removal generated a stronger acidification (0.41 +/- 0.09 pH units). Removal of luminal sodium (in the absence or presence of basolateral EIPA), or low luminal chloride, led to an alkalinization, presumably due to a decrease in intracellular sodium, strongly suggesting functional activity of NHE1inter. We therefore conclude that in the sweat duct, NHE1 plays a major role in intracellular pH regulation.  相似文献   

19.
Previous studies have shown that gastric glands express at least sodium-hydrogen exchanger (NHE) isoforms 1-4. Our aim was to study NHE-3 localization in rat parietal cells and to investigate the functional activity of an apical membrane NHE-3 isoform in parietal cells of rats. Western blot analysis and immunohistochemistry showed expression of NHE-3 in rat stomach colocalizing the protein in parietal cells together with the beta-subunit of the H(+)-K(+)-ATPase. Functional studies in luminally perfused gastric glands demonstrated the presence of an apical NHE isoform sensitive to low concentrations of 5-ethylisopropyl amiloride (EIPA). Intracellular pH measurements in parietal cells conducted in omeprazole-pretreated superfused gastric glands showed an Na+-dependent proton extrusion pathway that was inhibited both by low concentrations of EIPA and by the NHE-3 specific inhibitor S3226. This pathway for proton extrusion had a higher activity in resting glands and was inhibited on stimulation of histamine-induced H(+)-K(+)-ATPase proton extrusion. We conclude that the NHE-3 isoform located on the apical membrane of parietal cells offers an additional pathway for proton secretion under resting conditions. Furthermore, the gastric NHE-3 appears to work under resting conditions and inactivates during periods of H(+)-K(+)-ATPase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号