首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fes/Fer non-receptor tyrosine kinases regulate cell adhesion and cytoskeletal reorganisation through the modification of adherens junctions. Unregulated Fes/Fer kinase activity has been shown to lead to tumours in vivo. Here, we show that Drosophila Fer localises to adherens junctions in the dorsal epidermis and regulates a major morphological event, dorsal closure. Mutations in Src42A cause defects in dorsal closure similar to those seen in dfer mutant embryos. Furthermore, Src42A mutations enhance the dfer mutant phenotype, suggesting that Src42A and DFer act in the same cellular process. We show that DFer is required for the formation of the actin cable in leading edge cells and for normal rates of dorsal closure. We have isolated a gain-of-function mutation in dfer (dfergof) that expresses an N-terminally fused form of the protein, similar to oncogenic forms of vertebrate Fer. dfergof blocks dorsal closure and causes axon misrouting. We find that in dfer loss-of-function mutants beta-catenin is hypophosphorylated, whereas in dfergof beta-catenin is hyperphosphorylated. Phosphorylated beta-catenin is removed from adherens junctions and degraded, thus implicating DFer in the regulation of adherens junctions.  相似文献   

2.
3.
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.  相似文献   

4.
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.  相似文献   

5.
Transforming growth factor-beta (TGF-beta) regulates a wide range of physiological and pathological cellular processes, including cell migration, mesenchymal transition, extracellular matrix synthesis, and cell death. Cas (Crk-associated substrate, 130 kDa), an adaptor protein localized at focal adhesions and stress fibers, is also known to have important functions in cell migration and the induction of immediate-early gene expression. Here, we report that a rapid and transient tyrosine phosphorylation of Cas is induced by TGF-beta 1 and that E-cadherin-mediated cell-cell interaction and the Src kinase pathway are involved in this early TGF-beta signaling. The addition of TGF-beta 1 to epithelial cells rapidly induced tyrosine phosphorylation of Cas and promoted the formation of complexes between focal adhesion molecules. Cas phosphorylation required the integrity of the actin cytoskeleton but was not dependent on cell adhesion, implying that Cas-dependent signaling may be distinct from integrin signaling. TGF-beta 1 also stimulated Src kinase activity, and specific inhibitors of Src completely blocked the induction of Cas phosphorylation by TGF-beta 1. The Cas phosphorylation and Src kinase activation seen in our results were induced in an epithelial phenotype-specific manner. Stable transfection of E-cadherin to L929 cells and L cells as well as E-cadherin blocking assay revealed that E-cadherin-mediated cell-cell interactions were essential for both Cas phosphorylation and Src kinase activation. Taken together, our data suggest that rapid Cas phosphorylation and Src kinase activation may play a novel role in TGF-beta signal transduction.  相似文献   

6.
Embryonic dorsal closure (DC) in Drosophila is a series of morphogenetic movements involving the bilateral dorsal movement of the epidermis (cell stretching) and dorsal suturing of the leading edge (LE) cells to enclose the viscera. The Syk family tyrosine kinase Shark plays a crucial role in this Jun amino-terminal kinase (JNK)-dependent process, where it acts upstream of JNK in LE cells. Using a yeast two-hybrid screen, the unique Drosophila homolog of the downstream of kinase (Dok) family, Ddok, was identified by its ability to bind Shark SH2 domains in a tyrosine phosphorylation-dependent fashion. In cultured S2 embryonic cells, Ddok tyrosine phosphorylation is Src dependent; Shark associates with Ddok and Ddok localizes at the cell cortex, together with a portion of the Shark protein. The embryonic expression pattern of Ddok resembles the expression pattern of Shark. Ddok loss-of-function mutant (Ddok(PG155)) germ-line clones possess DC defects, including the loss of JNK-dependent expression of dpp mRNA in LE cells, and decreased epidermal F-actin staining and LE actin cable formation. Epistatic analysis indicates that Ddok functions upstream of shark to activate JNK signaling during DC. Consistent with these observations, Ddok mutant embryos exhibit decreased levels of tyrosine phosphorylated Shark at the cell periphery of LE and epidermal cells. As there are six mammalian Dok family members that exhibit some functional redundancy, analysis of the regulation of DC by Ddok is expected to provide novel insights into the function of the Dok adapter proteins.  相似文献   

7.
Treatment of cells with epidermal growth factor (EGF) promotes the activation of the small GTP-binding protein Cdc42, as well as its phosphorylation in cells. The EGF-dependent phosphorylation of Cdc42 occurs at tyrosine 64 in the Switch II domain and appears to be mediated through the Src tyrosine kinase, because both the expression of a dominant-negative Src mutant (mouse Src(K297R)) and treatment of cells with the Src kinase inhibitor PP2 blocks the EGF-stimulated phosphorylation of Cdc42, whereas expression of an activated Src mutant (Src(Y529F)) promotes phosphorylation in the absence of EGF treatment. The EGF-stimulated phosphorylation of Cdc42 is not required for its activation, nor does it directly affect the interactions of activated Cdc42 with target/effector proteins including PAK, ACK, WASP, or IQGAP. However, the EGF-stimulated phosphorylation of Cdc42 is accompanied by an enhancement in the interaction of Cdc42 with the Rho-GDP dissociation inhibitor (RhoGDI). The EGF-stimulated activation of Cdc42 does require activated Src, as well as the Vav2 protein, a member of the Dbl family of guanine nucleotide exchange factors. Src catalyzes the tyrosine phosphorylation of Vav2, and overexpression of Vav2 together with activated Src (Src(Y529F)) can completely bypass the need for EGF to promote the activation of Cdc42. Thus, EGF signaling through Src appears to have dual regulatory effects on Cdc42: 1). it leads to the activation of Cdc42 as mediated by the Vav2 guanine nucleotide exchange factor, and 2). it results in the phosphorylation of Cdc42, which stimulates the binding of RhoGDI, perhaps to direct the movement of Cdc42 to a specific cellular site to trigger a signaling response, because Cdc42-RhoGDI interactions are essential for Cdc42-induced cellular transformation.  相似文献   

8.
Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.  相似文献   

9.
Lipid modification of proteins by the addition of myristic acid to the N-terminal is important in a number of critical cellular processes, for example, signal transduction and the modulation of membrane association by myristoyl switches. Myristic acid is added to proteins by the enzyme N-myristoyltransferase (NMT) and in this paper we detail the effects on embryonic development of a null mutation in the Drosophila NMT gene. Mutant embryos display a range of phenotypes, including failures of head involution, dorsal closure, and germ-band retraction, morphogenetic processes that require cellular movements. Embryos with milder phenotypes have more specific defects in the central nervous system, including thinning of the ventral nerve chord and, in some embryos, specific scission at parasegment 10. Staining of mutant embryos with phalloidin shows that the mutant embryos have a disrupted actin cytoskeleton and abnormal cell morphology. These phenotypes are strikingly similar to those caused by genes involved in dynamic rearrangement of the actin cytoskeleton. For example the myristoylated nonreceptor tyrosine kinases Dsrc42A and Dsrc64B were shown recently to be key regulators of dorsal closure. In addition, analysis of cell death reveals widespread ectopic apoptosis. Our findings are consistent with the hypothesis that the myristoyl switches and signaling pathways characterized at the biochemical level have important functions in fundamental morphogenetic processes.  相似文献   

10.
The Drosophila kelch gene encodes a member of a protein superfamily defined by the presence of kelch repeats. In Drosophila, Kelch is required to maintain actin organization in ovarian ring canals. We set out to study the actin cross-linking activity of Kelch and how Kelch function is regulated. Biochemical studies using purified, recombinant Kelch protein showed that full-length Kelch bundles actin filaments, and kelch repeat 5 contains the actin binding site. Two-dimensional electrophoresis demonstrated that Kelch is tyrosine phosphorylated in a src64-dependent pathway. Site-directed mutagenesis determined that tyrosine residue 627 is phosphorylated. A Kelch mutant with tyrosine 627 changed to alanine (KelY627A) rescued the actin disorganization phenotype of kelch mutant ring canals, but failed to produce wild-type ring canals. Electron microscopy demonstrated that phosphorylation of Kelch is critical for the proper morphogenesis of actin during ring canal growth, and presence of the nonphosphorylatable KelY627A protein phenocopied src64 ring canals. KelY627A protein in ring canals also dramatically reduced the rate of actin monomer exchange. The phenotypes caused by src64 mutants and KelY627A expression suggest that a major function of Src64 signaling in the ring canal is the negative regulation of actin cross-linking by Kelch.  相似文献   

11.
Lipid modification of proteins by the addition of myristic acid to the N-terminal is important in a number of critical cellular processes, for example, signal transduction and the modulation of membrane association by myristoyl switches. Myristic acid is added to proteins by the enzyme N-myristoyltransferase (NMT) and in this paper we detail the effects on embryonic development of a null mutation in the Drosophila NMT gene. Mutant embryos display a range of phenotypes, including failures of head involution, dorsal closure, and germ-band retraction, morphogenetic processes that require cellular movements. Embryos with milder phenotypes have more specific defects in the central nervous system, including thinning of the ventral nerve chord and, in some embryos, specific scission at parasegment 10. Staining of mutant embryos with phalloidin shows that the mutant embryos have a disrupted actin cytoskeleton and abnormal cell morphology. These phenotypes are strikingly similar to those caused by genes involved in dynamic rearrangement of the actin cytoskeleton. For example the myristoylated nonreceptor tyrosine kinases Dsrc42A and Dsrc64B were shown recently to be key regulators of dorsal closure. In addition, analysis of cell death reveals widespread ectopic apoptosis. Our findings are consistent with the hypothesis that the myristoyl switches and signaling pathways characterized at the biochemical level have important functions in fundamental morphogenetic processes.  相似文献   

12.
Morphological and biochemical analyses have identified a set of proteins which together form a structure known as the adherens junction. Elegant experiments in tissue culture support the idea that adherens junctions play a key role in cell-cell adhesion and in organizing cells into epithelia. During normal embryonic development, cells quickly organize epithelia; these epithelial cells participate in many of the key morphogenetic movements of gastrulation. This prompted the hypothesis that adherens junctions ought to be critical for normal embryonic development. Drosophila Armadillo, the homologue of vertebrate beta-catenin, is a core component of the adherens junction protein complex and has been hypothesized to be essential for adherens junction function in vivo. We have used an intermediate mutant allele of armadillo, armadilloXP33, to test these hypotheses in Drosophila embryos. Adherens junctions cannot assemble in the absence of Armadillo, leading to dramatic defects in cell-cell adhesion. The epithelial cells of the embryo lose adhesion to each other, round up, and apparently become mesenchymal. Mutant cells also lose their normal cell polarity. These disruptions in the integrity of epithelia block the appropriate morphogenetic movements of gastrulation. These results provide the first demonstration of the effect of loss of adherens junctions on Drosophila embryonic development.  相似文献   

13.
Elaboration of the Drosophila body plan depends on a series of cell-identity decisions and morphogenetic movements regulated by intercellular signals. For example, Jun N-terminal kinase signaling regulates cell fate decisions and morphogenesis during dorsal closure, while Wingless signaling regulates segmental patterning of the larval cuticle via Armadillo. wingless or armadillo mutant embryos secrete a lawn of ventral denticles; armadillo mutants also exhibit dorsal closure defects. We found that mutations in puckered, a phosphatase that antagonizes Jun N-terminal kinase, suppress in a dose-sensitive manner both the dorsal and ventral armadillo cuticle defects. Furthermore, we found that activation of the Jun N-terminal kinase signaling pathway suppresses armadillo-associated defects. Jun N-terminal kinase signaling promotes dorsal closure, in part, by regulating decapentaplegic expression in the dorsal epidermis. We demonstrate that Wingless signaling is also required to activate decapentaplegic expression and to coordinate cell shape changes during dorsal closure. Together, these results demonstrate that MAP-Kinase and Wingless signaling cooperate in both the dorsal and ventral epidermis, and suggest that Wingless may activate both the Wingless and the Jun N-terminal kinase signaling cascades.  相似文献   

14.
Beta-catenin, a member of the Armadillo repeat protein family, binds directly to the cytoplasmic domain of E-cadherin, linking it via alpha-catenin to the actin cytoskeleton. A 30-amino acid region within the cytoplasmic domain of E-cadherin, conserved among all classical cadherins, has been shown to be essential for beta-catenin binding. This region harbors several putative casein kinase II (CKII) and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation sites and is highly phosphorylated. Here we report that in vitro this region is indeed phosphorylated by CKII and GSK-3beta, which results in an increased binding of beta-catenin to E-cadherin. Additionally, in mouse NIH3T3 fibroblasts expression of E-cadherin with mutations in putative CKII sites resulted in reduced cell-cell contacts. Thus, phosphorylation of the E-cadherin cytoplasmic domain by CKII and GSK-3beta appears to modulate the affinity between beta-catenin and E-cadherin, ultimately modifying the strength of cell-cell adhesion.  相似文献   

15.
16.
Missing in metastasis gene, or MTSS1, encodes an intracellular protein that is implicated in actin cytoskeleton reorganization and often down-regulated in certain types of tumor cells. In response to platelet-derived growth factor (PDGF), green fluorescent protein (GFP)-tagged murine Mtss1 (Mtss1-GFP) underwent redistribution from the cytoplasm to dorsal membrane ruffles along with phosphorylation at tyrosine residues in a time-dependent manner. Tyrosine phosphorylation of Mtss1-GFP was also elevated in cells where an oncogenic Src was activated but severely impaired in Src knock-out cells or cells treated with Src kinase inhibitor PP2. Mutagenesis analysis has revealed that phosphorylation occurs at multiple sites, including tyrosine residues Tyr-397 and Tyr-398. Mutation at both Tyr-397 and Tyr-398 abolished the PDGF-mediated tyrosine phosphorylation. Furthermore, recombinant Mtss1 protein was phosphorylated by recombinant Src in a manner dependent on Tyr-397 and Tyr-398. Efficient tyrosine phosphorylation of Mtss1 in response to PDGF also involves a coiled-coil domain, which is essential for a proper distribution to the cell leading edge and dorsal ruffles. Interestingly, overexpression of wild type Mtss1-GFP promoted the PDGF-induced dorsal ruffling, whereas overexpression of a mutant deficient in phosphorylation at Tyr-397 and Tyr-398 or a mutant with deletion of the coiled-coil domain impaired the formation of dorsal ruffles. These data indicate that Mtss1 represents a novel signaling pathway from PDGF receptor to the actin cytoskeleton via Src-related kinases.  相似文献   

17.
Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.  相似文献   

18.
Cell-culture studies indicate that tyrosine phosphorylation of the cadherin-catenin-complex (CCC) is one of the post-translational mechanism regulating E-cadherin-mediated cell adhesion. In this investigation, controlled application of a tyrosine phosphatase inhibitor (orthovanadate) and tyrosine kinase inhibitor (tyrphostin) to early Drosophila embryos, followed by biochemical assays and phenotypic analysis, has been utilized to address the mechanism by which tyrosine phosphorylation regulates E-cadherin-mediated cell adhesion in vivo. Our data suggest that, in the Drosophila embryo, β-catenin (Drosophila homolog Armadillo) is the primary tyrosine-phosphorylated protein in the CCC. The increase in tyrosine phosphorylation correlates with a loss of epithelial integrity and adherens junctions in the ectoderm of early embryos. Late application of the phosphatase inhibitor does not have this effect, presumably because of the formation of septate junctions in late embryos. Co-immunoprecipitation assays have demonstrated that tyrosine hyper-phosphorylation does not cause the dissociation of Drosophila (D)E-cadherin and α-catenin or Armadillo, suggesting that abrogation in adhesion is most likely attributable to the detachment of actin-associated proteins from the CCC. Finally, although the Drosophila epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is linked to the CCC and shows genetic interactions with DE-cadherin, we find that a constitutively active Drosophila EGFR construct does not cause any detectable changes in the level of tyrosine phosphorylation of Armadillo or destabilization of the CCC. This work was supported by UCLA USPHS National Research Service Award GM07185 to F.W., and NIH Grant NS 29367 to V.H.  相似文献   

19.
The preimplantation development of the mouse embryo leads to the divergence of the first two cell lineages, the inner cell mass and the trophectoderm. The formation of a microvillus pole during compaction at the eight-cell stage and its asymmetric inheritance during mitosis are key events in the emergence of these two cell populations. Ezrin, a member of the ERM protein family, seems to be involved in the formation and stabilization of this apical microvillus pole. To further characterize its function in early development, we mutated the key residue T567, which was reported to be essential for regulation of ezrin function through phosphorylation. Here, we show that expression of ezrin mutants in which the COOH-terminal threonine T567 was replaced by an aspartate (to mimic a phosphorylated residue; T567D) or by an alanine (to avoid phosphorylation; T567A) interferes with E-cadherin function and disrupts the first morphogenetic events of development: compaction and cavitation. The active mutant ezrin-T567D induces the formation of numerous and abnormally long microvilli at the surface of blastomeres. Moreover, it localizes all around the cell cortex and inhibits cell-cell adhesion and cell polarization at the eight-cell stage. During the following stages, only half of the embryos are able to compact and finally to cavitate. In those embryos, the amount of ezrin-T567D decreases in the basolateral areas, while the proportion of adherens junctions increases. The reverse inactive mutant ezrin-T567A is mainly cytoplasmic and does not perturb compaction at the eight-cell stage. However, at the 16-cell stage, it relocalizes at the basolateral cortex, leading to a strong decrease in the surface of adherens junctions, and finally, embryos abort development. Our results show that ezrin is directly involved in the formation of microvilli in the early mouse embryo. Moreover, they indicate that maintenance of ezrin in basolateral areas prevents microvilli breakdown and inhibits the formation of normal cell-cell contacts mediated by E-cadherin, thereby impairing blastomeres polarization and morphogenesis of the blastocyst.  相似文献   

20.
We and others have shown that phosphatidylinositol 3-kinase (PI3K) is recruited to and activated by E-cadherin engagement. This PI3K activation is essential for adherens junction integrity and intestinal epithelial cell differentiation. Here we provide evidence that hDlg, the homolog of disc-large tumor suppressor, is another key regulator of adherens junction integrity and differentiation in mammalian epithelial cells. We report the following. 1) hDlg co-localizes with E-cadherin, but not with ZO-1, at the sites of cell-cell contact in intestinal epithelial cells. 2) Reduction of hDlg expression levels by RNA(i) in intestinal cells not only severely alters adherens junction integrity but also prevents the recruitment of p85/PI3K to E-cadherin-mediated cell-cell contact and inhibits sucrase-isomaltase gene expression. 3) PI3K and hDlg are associated with E-cadherin in a common macromolecular complex in living differentiating intestinal cells. 4) This interaction requires the association of hDlg with E-cadherin and with Src homology domain 2 domains of the p85/PI3K subunit. 5) Phosphorylation of hDlg on serine and threonine residues prevents its interaction with the p85 Src homology domain 2 in subconfluent cells, whereas phosphorylation of hDlg on tyrosine residues is essential. We conclude that hDlg may be a determinant in E-cadherin-mediated adhesion and signaling in mammalian epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号