首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Blood-forming potential of vascular endothelium in the human embryo   总被引:15,自引:0,他引:15  
Hematopoietic cells arise first in the third week of human ontogeny inside yolk sac developing blood vessels, then, one week later and independently, from the wall of the embryonic aorta and vitelline artery. To address the suggested derivation of emerging hematopoietic stem cells from the vessel endothelium, endothelial cells have been sorted by flow cytometry from the yolk sac and aorta and cultured in the presence of stromal cells that support human multilineage hematopoiesis. Embryonic endothelial cells were most accurately selected on CD34 or CD31 surface expression and absence of CD45, which guaranteed the absence of contaminating hematopoietic cells. Yet, rigorously selected endothelial cells yielded a progeny of myelo-lymphoid cells in culture. The frequency of hemogenic endothelial cells in the yolk sac and aorta reflected the actual blood-forming activity of these tissues, as a function of developmental age. Even less expected, a subset of endothelial cells sorted similarly from the embryonic liver and fetal bone marrow also exhibited blood-forming potential. These results suggest that a part at least of emerging hematopoietic cells in the human embryo and fetus originate in vascular walls.  相似文献   

2.
The existence of the hemangioblast, a common progenitor of the endothelial and hematopoietic cell lineages, was proposed at the beginning of the century. Although recent findings seem to confirm its existence, it is still unknown when and how the hemangioblasts differentiate. We propose a hypothesis about the origin of hemangioblasts from the embryonic splanchnic mesothelium. The model is based on observations collected from the literature and from our own studies. These observations include: (1) the extensive population of the splanchnic mesoderm by mesothelial-derived cells coinciding with the emergence of the endothelial and hematopoietic progenitors; (2) the transient localization of cytokeratin, the main mesothelial intermediate filament protein, in some embryonic vessels and endothelial progenitors; (3) the possible origin of cardiac vessels from epicardial-derived cells; (4) the origin of endocardial cells from the splanchnic mesoderm when this mesoderm is an epithelium; (5) the evidence that mesothelial cells migrate to the hemogenic areas of the dorsal aorta. (6) Biochemical and antigenic similarities between mesothelial and endothelial cells. We suggest that the endothelium-lined vascular system arose as a specialization of the phylogenetically older coelomic cavities. The origin of the hematopoietic cells might be related to the differentiation, reported in some invertebrates, of coelomocytes from the coelomic epithelium. Some types of coelomocytes react against microbial invasion and other types transport respiratory pigments. We propose that this phylogenetic origin is recapitulated in the vertebrate ontogeny and explains the differentiation of endothelial and blood cells from a common mesothelial-derived progenitor.  相似文献   

3.
In this study, we attempted to assess the incorporable potential of vascular endothelial cells derived from adult organ blood vessels into tumor blood vessels. Two kinds of adult organ-derived vascular endothelial cells, human aorta endothelial cells (HAEC) and umbilical vein endothelial cells (HUVEC), were administered into murine tumors inoculated to SCID mice. Many human blood vessel networks were visualized in the murine tumors. These cells in solid tumor not only survived and proliferated, but also incorporated into tumor endothelium. These results suggest that adult organ-derived vascular endothelial cells possess the potential to form the neovascular network in various tissues such as vascular endothelial progenitor-like cells in vivo. We propose that these cells can be regarded as a congenic (autologous) vector for vascular regeneration cell therapy and tumor vascular targeting gene therapy.  相似文献   

4.
Definitive hematopoietic progenitor cells have been thought to develop from the vascular endothelium located in the aorta-gonad-mesonephros region of the mouse embryo. However, several recent findings have suggested that most hematopoietic progenitors are derived from non-endothelial precursor cells expressing CD41. We characterized two distinct precursor populations of definitive hematopoietic cell lineages, vascular endothelial (VE)-cadherin(+) CD41(-) CD45(-) endothelial cells and CD41(+) CD45(-) non-endothelial progenitors, both of which are derived from lateral mesoderm. VE-cadherin(+) endothelial cells obtained from cultures of differentiating embryonic stem cells possessed hematopoietic potential encompassing erythroid, myeloid and B lymphoid lineages, whereas CD41(+) progenitors lacked the B lymphopoietic potential. VE-cadherin(+) endothelial cells in the lower trunk of the embryo proper showed a significant potential for initiating B lymphopoiesis in cultures, while endothelial cells in the yolk sac appeared to have a bias for myeloerythropoietic differentiation. CD41(+) progenitors isolated from yolk sac and embryo proper were capable of generating multiple hematopoietic lineages, although mast cell precursors were exclusively enriched in CD41(+) progenitors in the yolk sac. These results suggest that hemogenic endothelial cells and CD41(+) progenitors possess distinct hematopoietic potential depending on the tissues in which they reside.  相似文献   

5.
More than a century ago, several embryologists described sites of hematopoietic activity in the vascular wall of mid-gestation vertebrate embryos, and postulated the transient existence of a blood generating endothelium during ontogeny. This hypothesis gained significant attention in the 1970s when orthotopic transplantation experiments between quail and chick embryos revealed specific vascular areas as the site of the origin of definitive hematopoiesis. However, the vascular origin of hematopoietic precursors remained elusive and controversial for decades. Only recently, multiple experimental approaches have clearly documented that during vertebrate development definitive hematopoietic precursors arise from a subset of vascular endothelial cells. Interestingly, this differentiation is promoted by the intravascular fluid mechanical forces generated by the establishment of blood flow upon the initiation of heartbeat, and it is therefore connected with cardiovascular development in several critical aspects. In this review we present our current understanding of the relationship between vascular and definitive hematopoietic development through an historical analysis of the scientific evidence produced in this area of investigation.  相似文献   

6.
《遗传学报》2020,47(5):249-261
Interspecies chimera through blastocyst complementation could be an alternative approach to create human organs in animals by using human pluripotent stem cells.A mismatch of the major histocompatibility complex of vascular endothelial cells between the human and host animal will cause graft rejection in the transplanted organs.Therefore,to achieve a transplantable organ in animals without rejection,creation of vascular endothelial cells derived from humans within the organ is necessary.In this study,to explore whether donor xeno-pluripotent stem cells can compensate for blood vasculature in host animals,we generated rat-mouse chimeras by injection of rat embryonic stem cells(rESCs) into mouse blastocysts with deficiency of Flk-1 protein,which is associated with endothelial and hematopoietic cell development.We found that rESCs could differentiate into vascular endothelial and hematopoietic cells in the rat-mouse chimeras.The whole yolk sac(YS) of Flk-1~(EGFP/ECFP) rat-mouse chimera was full of rat blood vasculature.Rat genes related to vascular endothelial cells,arteries,and veins,blood vessels formation process,as well as hematopoietic cells,were highly expressed in the YS.Our results suggested that rat vascular endothelial cells could undergo proliferation,migration,and self-assembly to form blood vasculature and that hematopoietic cells could differentiate into B cells,T cells,and myeloid cells in rat-mouse chimeras,which was able to rescue early embryonic lethality caused by Flk-1 deficiency in mouse.  相似文献   

7.
Embryonic development of the human hematopoietic system   总被引:6,自引:0,他引:6  
Human hematopoiesis is initiated in the yolk sac during the third week of development. At the same time the capacity to produce blood cells also arises in the embryo, within the splanchnopleura, but this potential is not expressed before day 27, when clustered hematopoietic stem cells emerge from the ventral wall of the aorta and vitelline artery. Budding of hematopoietic cells from vessel walls reflects the re-differentiation of local endothelial cells, which are likely derived from angio-hematopoietic mesodermal ancestors emigrated from the splanchnopleura. Yolk sac-derived stem cells are limited to myelo-erythroid development, whereas those born in the embryo are, in addition, lymphopoietic and therefore represent the first multi-potent, adult-type blood progenitors that appear in human ontogeny, preceding shortly the onset of liver hematopoiesis. These results allowed the establishment of a novel hierarchy of blood-forming tissues in human development and induced an in depth reconsideration of the very origin of definitive human hematopoiesis. These results also fully corroborate the outcome of experiments performed in parallel in avian and mouse embryos and point to the conservation in all higher vertebrates of an ancestral route of blood cell production via embryonic vessel walls.  相似文献   

8.
9.
10.
11.
In order to investigate the effects of human yolk sac-derived endothelial cells (hYSECs) on the expansion of human hematopoietic stem/progenitor cells (HS/PCs) from umbilical cord blood (UCB) in vitro, we purified hYSEC-like cells from 4-5 week human yolk sacs, which were morphologically similar to endothelial cells and expressed CD31, CD144 and vWF characteristics of endothelial cells. Then we isolated CD34(+) cells from UCB in culture under three different conditions: with hematopoietic cytokines (CKs), contact-coculture or noncontact-coculture with hYSECs supplemented with CKs, and found that the contact-coculture system had the strongest expansion efficiency in the total cells' (TCs) ability to form HPP-CFCs. Erythroid burst-forming units (BFU-E) increased 52.35-fold, 20.26-fold and 27.77-fold, respectively, compared with pre-expansion. We detected that the mRNA of Notch ligands such as Jagged1, Delta1 and Delta4 could express in hYSECs after contacted culture with UCB-CD34(+) cells but not the noncontacted cells by RT-PCR analysis. Therefore, we concluded that the contact-coculture system supplemented with CKs could support the expansion of UCB-HS/PCs in vitro, especially high potential proliferative colony-forming cells (HPP-CFC) and BFU-E, perhaps owing to Notch signal pathway.  相似文献   

12.
Cre transgenic mice can be used to delete gene sequences flanked by loxP sites in specific somatic tissues. We have generated vavCre transgenic mice, which can be used to inactivate genes specifically in adult hematopoietic and endothelial cells. In these animals, a Cre transgene is expressed under control of murine vav gene regulatory elements. To assess their usefulness, vavCre transgenic mice were bred with R26R mice, which express a lacZ reporter gene only in cells where Cre-mediated recombination has occurred. VavCre/R26R double-heterozygous offspring were analyzed by beta-galactosidase histochemistry and flow cytometry. VavCre-mediated recombination occurred in most hematopoietic cells of all hematopoietic organs, including the hematopoietic progenitor-rich bone marrow. Recombination also occurred in most endothelial and germ cells, but only rarely in other cell types. The recombination in both hematopoietic and endothelial lineages may partly reflect their putative shared ontogeny and provides a unique tool for simultaneous pan-hematopoietic and endothelial mutagenesis.  相似文献   

13.
Tracing the progeny of the aortic hemangioblast in the avian embryo   总被引:9,自引:0,他引:9  
A population of hematopoietic progenitors becomes committed within the embryo proper in the floor of the aorta (P-Sp/AGM in the mouse). In birds, this first aspect of intraembryonic hematopoiesis is prominent during embryonic day 3 (E3) as endothelium-associated "intra-aortic clusters." Between E6 and E8, diffuse hematopoiesis then occurs as "para-aortic foci" located in the dorsal mesentery ventral to the aorta. These foci are not associated with endothelium. Whether these two hematopoietic cell populations arise from distinct or common progenitors is not known. We could recently trace back the origin of intra-aortic clusters in the avian embryo by labeling aortic endothelial cells (EC) in vivo with acetylated low-density lipoproteins. This approach established the derivation of early intraembryonic hemopoietic cells from the endothelium, but did not indicate how long during ontogeny such a relationship may exist, since the progeny of EC labeled at E2 could be traced for 1-2 days at most. Here we report that, when E2 aortic ECs were infected prior to the formation of intra-aortic clusters with a nonreplicative LacZ-bearing retroviral vector, numerous cells were labeled in the para-aortic foci at E6. In contrast, when the retroviral vector was inoculated at E4 rather than E2, that is, after the disappearance of intra-aortic clusters, no cells in the para-aortic foci were labeled. Taken together, our results demonstrate that ECs from the aortic floor seed the two aspects of aorta-associated hemopoiesis and that these ECs with hemangioblastic potential are present only transiently in the aorta.  相似文献   

14.
Blood and vascular endothelial cells form in all vertebrates during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Blood islands' of primitive hematopoietic cell clusters surrounded by a layer of endothelial cells form in the yolk sac, external to the developing embryo proper. These lineages arise from a layer of extraembryonic mesoderm that is closely apposed with a layer of primitive (visceral) endoderm. Despite the identification of genes such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1 and CD34 that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules (Indian hedgehog) is produced by visceral endoderm, can induce formation of blood and endothelial cells in explant cultures and can reprogram prospective neurectoderm along hematopoietic and endothelial cell lineages. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. These findings may have important implications for regulating hematopoiesis and vascular development for therapeutic purposes in humans and for the development of new sources of stem cells for transplantation and gene therapy.  相似文献   

15.
We have developed a monoclonal antibody that specifically interacts with a surface antigen of human fibroblasts and smooth muscle cells. The antibody (antibody IIG10) recognizes a polypeptide of molecular mass 330,000, revealed by immunoblotting in fibroblast and smooth muscle cell extract, but not in vascular endothelial cells, peritoneal macrophages, peripheral blood lymphocytes nor hepatocytes. In tissue sections the antibody stained smooth muscle cells of myometrium, aorta and smaller blood vessels, and fibroblasts of connective tissue. Specificity of the antibody was further confirmed by double staining of aorta sections. Antibody IIG10 was used to identify smooth muscle-derived foam cells in the atherosclerotic plaque of human aorta.  相似文献   

16.
17.
Embryonic stem (ES) cells have the potential to develop into various cell lineages including hemangioblasts (Flk1+), a common progenitor for hematopoietic and vascular endothelial cells. Previous studies indicate that Flk1+ cells, a marker for hemangioblast, can be derived from ES cell and that Flk1+ can be differentiated into hematopoietic or endothelial cells depending on culture conditions. We developed an improved in vitro system to generate Flk1+-enriched cultures from mouse ES cells and used this in vitro system to study the role of Wnt signalling in early endothelial progenitor cells. We determined the expression of the Wnt and Frizzled genes in Flk1+ cells derived from mouse ES cells. RT-PCR analyses identified significantly higher expression of non-canonical Wnt5a and Wnt11 genes in Flk1+ cells compared to Flk1- cells. In contrast, expression of canonical Wnt3a gene was reduced in Flk1+ cells. In addition, Frizzled2, Frizzled5 and Frizzled7 genes were also expressed at a higher level in Flk1+ cells. The differential expression of Wnt and Frizzled genes in Flk1+ cells provides a novel insight into the role of non-canonical Wnt signalling in vascular endothelial fate determination.  相似文献   

18.
Bone marrow sinusoidal endothelial cells have a specific function as a site of transmigration of hematopoietic stem and progenitor cells and mature blood cells between bone marrow and blood stream. However, the specific characteristics of bone marrow sinusoidal endothelial cells are still largely unclear. We here report that these cells express stabilin-1 and stabilin-2, which in liver sinusoidal endothelial cells have been identified as endocytic scavenger receptors for several ligands, including SPARC and hyaluronan. We show here that intravenously injected formaldehyde-treated serum albumin, advanced glycation end-products, and collagen I α-chains were taken up by bone marrow sinusoidal endothelial cells, showing that these cells have a scavenging function and thereby may modulate bone marrow vascular stem cell niches. Importantly, we show hyaluronan mediated adhesion of hematopoietic stem and progenitor cells to stabilin-2-transfected cells, suggesting that stabilin-2 contributes to adhesion and homing of circulating stem and progenitor cells to bone marrow.  相似文献   

19.
During ontogeny, hematopoietic stem cells (HSC) become committed outside of hematopoietic organs. Once held to emerge from the yolk sac, they are currently thought to originate from the early aorta. However we now show that the allantois in the avian embryo and the placenta in the mouse embryo produce HSC in very large numbers. These sites thus appear to have a central role in the process of HSC emergence.  相似文献   

20.
We have found that a mouse monoclonal antibody (alpha Leu-13) to a 16 kilodalton human lymphocyte surface antigen reacts with vascular endothelial cells as determined by immunoperoxidase staining of frozen tissue sections. In earlier studies, alpha Leu-13 was found to induce purified T cells to aggregate when added to cultures in nanogram concentrations. In the studies reported here, alpha Leu-13 stained vascular endothelial cells of arteries, capillaries, and veins in all organs examined from adults. It also reacted weakly with epithelial cells of proximal tubules of the kidney and with nonkeratinized basal epithelial cells of the cervix and esophagus. When a panel of tissues from a 14-wk-old fetus was examined, alpha Leu-13 was not found to react with endothelial cells of any specimen. However, it did stain medullary thymocytes and placental trophoblasts of this fetus. The implications of these findings to the possible function of the Leu-13 antigen in immune ontogeny are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号