首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed respiratory muscle response patterns to chemoreceptor stimuli (hypercapnia, hypoxia, normocapnic hypoxia, almitrine, and almitrine + CO2) in six awake dogs. Mean electromyogram (EMG) activities were measured in the crural (CR) diaphragm, triangularis sterni (TS), and transversus abdominis (TA). Hypercapnia and normocapnic hypoxia caused mild to marked hyperpnea [2-5 times control inspiratory flow (VI)] and increased activity in CR diaphragm, TS, and TA. When hypocapnia was permitted to develop during hypoxia and almitrine-induced moderate hyperpnea, CR diaphragm activity increased, whereas TS and TA activities usually did not change or were reduced below control. Over time in hypercapnia, CR diaphragm, TS, and TA were augmented and maintained at these levels over many minutes; with hypoxic hyperventilation CR diaphragm, TS, and TA were first augmented but then CR diaphragm remained augmented while TS and, less consistently, TA were inhibited over time. Marked hyperpnea (4-5 times control) due to carotid body stimulation increased TA and TS EMG activity despite an accompanying hypocapnia. We conclude that in the intact awake dog 1) carotid body stimulation augments the activity of both inspiratory and expiratory muscles; 2) hypocapnia overrides the augmenting effect of carotid body stimulation on expiratory muscles during moderate hyperpnea, usually resulting in either no change or inhibition; 3) at higher levels of hyperpnea both chemoreceptor stimulation and stimulatory effects secondary to a high ventilatory output favor expiratory muscle activation; these effects override any inhibitory effects of a coincident hypocapnia; and 4) expiratory muscles of the rib cage/abdomen may be augmented/inhibited independently of one another.  相似文献   

2.
We assessed changes in respiratory muscle timing in response to hyperpnea and shortened inspiratory and expiratory times caused by chemoreceptor stimuli in six awake dogs. Durations of postinspiratory inspiratory activity of costal and crural diaphragm (PIIA), the delay in diaphragm electromyogram (EMG) after the initiation of inspiratory airflow, postexpiratory expiratory activity of the transversus abdominis (PEEA), and the delay of abdominal expiratory muscle activity after the initiation of expiratory airflow were measured. In control, four out of six dogs showed PIIA [8-10% of expiratory time (TE)]; all showed delay of diaphragm [19% of inspiratory time (TI)], delay of abdominal muscle activation (21% of TE), and PEEA (24% of TI). Hypercapnia decreased PIIA (4-9% of TE), maintained diaphragm delay at near control values (23% of TI), increased PEEA (36% of TI), eliminated delay of abdominal muscle activation (4% of TE), and decreased end-expiratory lung volume (EELV). Hypocapnic hypoxia increased PIIA (24-25% of TE), eliminated diaphragm delay (3% of TI), eliminated PEEA (3% of TI), reduced delay of abdominal muscle activation (14% of TE), and increased EELV. Most of these effects of hypoxic hypocapnia vs. hypercapnia on the within-breath EMG timing parameters corresponded to differences in the magnitude of expiratory muscle activation. These changes exerted significant influences on flow rates and EELV.  相似文献   

3.
Animal studies have shown activation of upper airway muscles prior to inspiratory efforts of the diaphragm. To investigate this sequence of activation in humans, we measured the electromyogram (EMG) of the alae nasi (AN) and compared the time of onset of EMG to the onset of inspiratory airflow, during wakefulness, stage II or III sleep (3 subj), and CO2-induced hyperpnea (6 subj). During wakefulness, the interval between AN EMG and airflow was 92 +/- 34 ms (mean +/- SE). At a CO2 level of greater than or equal to 43 Torr, the AN EMG to airflow was 316 +/- 38 ms (P < 0.001). During CO2-induced hyperpnea, the AN EMG to airflow interval and AN EMG magnitude increased in direct proportion to CO2 levels and minute ventilation. During stages II and III of sleep, the interval between AN EMG and airflow increased when compared to wakefulness (P < 0.005). We conclude that a sequence of inspiratory muscle activation is present in humans and is more apparent during sleep and during CO2-induced hyperpnea than during wakefulness.  相似文献   

4.
Effect of diaphragm fatigue on neural respiratory drive.   总被引:1,自引:0,他引:1  
To test the hypothesis that diaphragm fatigue leads to an increase in neural respiratory drive, we measured the esophageal diaphragm electromyogram (EMG) during CO(2) rebreathing before and after diaphragm fatigue in six normal subjects. The electrode catheter was positioned on the basis of the amplitude and polarity of the diaphragm compound muscle action potential recorded simultaneously from four pairs of electrodes during bilateral anterior magnetic phrenic nerve stimulation (BAMPS) at functional residual capacity. Two minutes of maximum isocapnic voluntary ventilation (MIVV) were performed in six subjects to induce diaphragm fatigue. A maximal voluntary breathing against an inspiratory resistive loading (IRL) was also performed in four subjects. The reduction of transdiaphragmatic pressure elicited by BAMPS was 22% (range 13-27%) after 2 min of MIVV and was similar, 20% (range 13-26%), after IRL. There was a linear relationship between minute ventilation (VE) and the root mean square (RMS) of the EMG during CO(2) rebreathing before and after fatigue. The mean slope of the linear regression of RMS on VE was similar before and after diaphragm fatigue: 2.80 +/- 1.31 vs. 3.29 +/- 1.40 for MIVV and 1.51 +/- 0.31 vs 1.55 +/- 0.31 for IRL, respectively. We conclude that the esophageal diaphragm EMG can be used to assess neural drive and that diaphragm fatigue of the intensity observed in this study does not affect respiratory drive.  相似文献   

5.
Eleven normal adults each performed a ten minute progressive isocapnic hyperventilation (PIHV) test in which ventilatory levels were increased every two minutes. All subjects exhibited mechanical fatigue by failing to maintain the target of 80% of maximum voluntary ventilation (MVV). The mean ventilation at this level was 67.5 +/- 1.4% MVV. This fatigue was accompanied by a fall in transdiaphragmatic pressure. During the test the EMG of the sternomastoid (SM) was monitored by surface electrodes and was analyzed using fast-fourier transform. The centroid frequency (Fc) fell as ventilation increased, and correlated negatively with the inability to achieve target ventilation(r = -0.99, p less than 0.015). Five subjects performed the test while the diaphragmatic EMG was recorded from an oesophageal electrode (DIes) and from surface electrodes (DIs). The Fc of DIes fell with increasing ventilation levels (r = -0.95, p less than 0.05) and there was a correlation between the Fc changes of both DIes and the SM (r = -0.92, p less than 0.001). The Fc of DIs did not correlate with either mechanical performance or the Fc of DIes, because of contamination of surface signals by signals from expiratory muscles. It is concluded that the PIHV along with surface monitoring of EMG activity from the sternomastoid can serve as a non-invasive method for evaluating inspiratory muscle fatigue.  相似文献   

6.
The inspiratory muscles can be fatigued by repetitive contractions characterized by high force (inspiratory resistive loads) or high velocities of shortening (hyperpnea). The effects of fatigue induced by inspiratory resistive loaded breathing (pressure tasks) or by eucapnic hyperpnea (flow tasks) on maximal inspiratory pressure-flow capacity and rib cage and diaphragm strength were examined in five healthy adult subjects. Tasks consisted of sustaining an assigned breathing frequency, duty cycle, and either a "pressure-time product" of esophageal pressure (for the pressure tasks) or peak inspiratory flow rate (for the flow tasks). Esophageal pressure was measured during maximal inspiratory efforts against a closed glottis (Pesmax), maximal transdiaphragmatic pressure was measured during open-glottis expulsive maneuvers (Pdimax), and maximal inspiratory flow (VImax) was measured during maximal inspiratory efforts with no added external resistance before and after fatiguing pressure and flow tasks. The reduction in Pesmax) with pressure fatigue (-25 +/- 7%) was significantly greater than the change in Pesmax with flow fatigue (-8 +/- 8%, P less than 0.01). In contrast, the reductions in Pdimax (-11 +/- 8%) and VImax (-16 +/- 3%) with flow fatigue were greater than the changes in Pdimax (-0.6 +/- 4%, P less than 0.05) or VImax (-3 +/- 4%, P less than 0.05) with pressure fatigue. We conclude that respiratory muscle performance is dependent not only on the presence of fatigue but whether fatigue was induced by pressure tasks or flow tasks. The specific impairment of Pesmax and not of Pdimax or flow with pressure fatigue may reflect selective fatigue of the rib cage muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of the present study was to assess the effects of bronchoconstriction on respiratory changes in length of the costal diaphragm and the parasternal intercostal muscles. Ten dogs were anesthetized with pentobarbital sodium and tracheostomized. Respiratory changes in muscle length were measured using sonomicrometry, and electromyograms were recorded with bipolar fine-wire electrodes. Administration of histamine aerosols increased pulmonary resistance from 6.4 to 14.5 cmH2O X l-1 X s, caused reductions in inspiratory and expiratory times, and decreased tidal volume. The peak and rate of rise of respiratory muscle electromyogram (EMG) activity increased significantly after histamine administration. Despite these increases, bronchoconstriction reduced diaphragm inspiratory shortening in 9 of 10 dogs and reduced intercostal muscle inspiratory shortening in 7 of 10 animals. The decreases in respiratory muscle tidal shortening were less than the reductions in tidal volume. The mean velocity of diaphragm and intercostal muscle inspiratory shortening increased after histamine administration but to a smaller extent than the rate of rise of EMG activity. This resulted in significant reductions in the ratio of respiratory muscle velocity of shortening to the rate of rise of EMG activity after bronchoconstriction for both the costal diaphragm and the parasternal intercostal muscles. Bronchoconstriction changed muscle end-expiratory length in most animals, but for the group of animals this was statistically significant only for the diaphragm. These results suggest that impairments of diaphragm and parasternal intercostal inspiratory shortening occur after bronchoconstriction; the mechanisms involved include an increased load, a shortening of inspiratory time, and for the diaphragm possibly a reduction in resting length.  相似文献   

8.
The periaqueductal gray matter is an essential neural substrate for central integration of defense behavior and accompanied autonomic responses. The dorsal half of the periaqueductal gray matter (dPAG) is also involved in mediating emotional responses of anxiety and fear, psychological states that often are associated with changes in ventilation. However, information regarding respiratory modulation elicited from this structure is limited. The present study was undertaken to investigate the relationship between stimulus frequency and magnitude on ventilatory pattern and respiratory muscle activity in urethane-anesthetized, spontaneously breathing rats. Electrical stimulation in the dPAG-recruited abdominal muscle activity increased ventilation and increased respiratory frequency by significantly shortening both inspiratory time and expiratory time. Ventilation increased within the first breath after the onset of stimulation, and the respiratory response increased with increasing stimulus frequency and magnitude. dPAG stimulation also increased baseline EMG activity in the diaphragm and recruited baseline external abdominal oblique EMG activity, normally quiescent during eupneic breathing. Significant changes in cardiorespiratory function were only evoked by stimulus intensities >10 microA and when stimulus frequencies were >10 Hz. Respiratory activity of both the diaphragm and abdominal muscles remained elevated for a minimum of 60 s after cessation of stimulation. These results demonstrate that there is a short-latency respiratory response elicited from the dPAG stimulation, which includes both inspiratory and expiratory muscles. The changes in respiratory timing suggest rapid onset and sustained poststimulus dPAG modulation of the brain stem respiratory network that includes expiratory muscle recruitment.  相似文献   

9.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We examined the effects of reversible vagal cooling on respiratory muscle activities in awake chronically instrumented tracheotomized dogs. We specifically analyzed electromyographic (EMG) activity and its ventilatory correlates, end-expiratory lung volume (EELV) and diaphragmatic resting length via sonomicrometry. Elimination of phasic and tonic mechanoreceptor activity by vagal cooling doubled the EMG activity of the costal, crural, and parasternal muscles, with activation occurring sooner relative to the onset of inspiratory flow. Diaphragmatic postinspiration inspiratory activity in the intact dog coincided with a brief mechanical shortening of the diaphragm during early expiration; vagal blockade removed both the electrical activity and the mechanical shortening. Vagal blockade also doubled the EMG activity of a rib cage expiratory muscle, the triangularis sterni, but reduced that of an abdominal expiratory muscle, the transversus abdominis. Within-breath electrical activity of both muscles occurred sooner relative to the onset of expiratory flow during vagal blockade. Vagal cooling was also associated with a 12% increase in EELV and a 5% decrease in end-expiratory resting length of the diaphragm. We conclude that vagal input significantly modulates inspiratory and expiratory muscle activities, which help regulate EELV efficiently and optimize diaphragmatic length during eupneic breathing in the awake dog.  相似文献   

11.
In three foxhounds after left pneumonectomy, the relationships of ventilatory work and respiratory muscle (RM) blood flow to ventilation (VE) during steady-state exercise were examined. VE was measured using a specially constructed respiratory mask and a pneumotach; work of breathing was measured by the esophageal balloon technique. Blood flow to RM was measured by the radionuclide-labeled microsphere technique. Lung compliance after pneumonectomy was 55% of that before pneumonectomy; compliance of the thorax was unchanged. O2 uptake (VO2) of RM comprised only 5% of total body VO2 at exercise. At rest, inspiratory muscles received 62% and expiratory muscles 38% of the total O2 delivered to the RM (QO2RM). During exercise, inspiratory muscles received 59% and expiratory muscles 41% of total QO2RM. Blood flow per gram of muscle to the costal diaphragm was significantly higher than that to the crural diaphragm. The diaphragm, parasternals, and posterior cricoarytenoids were the most important inspiratory muscles, and internal intercostals and external obliques were the most important expiratory muscles for exercise. Up to a VE of 120 l/min through one lung, QO2RM constituted only a small fraction of total body VO2 during exercise and maximal vasodilation in the diaphragm was never approached.  相似文献   

12.
The extent to which diaphragmatic fatigue results from failure of neural drive has been investigated using twitch occlusion. Fatigue was induced by repeatedly generating transdiaphragmatic pressures (Pdi) of either 50 or 75% maximum Pdi (Pdimax) until approximately 10 min after the target Pdi could no longer be reached (Tlim). Maximal bilateral shocks delivered periodically to the phrenic nerves elicited Pdi twitches between breaths (Tr) and superimposed on the voluntary contractions (Ts). The ratio [1 - Ts/Tr], which provides an index of the degree of central nervous system muscle activation, increased as fatigue developed. However, superimposed twitches were still detectable at and beyond Tlim when all contractions involved maximal efforts. They were not seen in maximal contractions of the unfatigued muscle. Initially, the diaphragm electromyogram increased, but then declined. No impairment of neuromuscular transmission was seen. We conclude that at and beyond Tlim about one-half of the reduction in Pdimax resulted from reduced central motor drive; the remainder resulted from peripheral muscle contractile failure. No fatigue was evident during 50% Pdimax dynamic contractions.  相似文献   

13.
Minute ventilation (VE), arterial blood gases, diaphragmatic electromyogram (EMG) activity, centroid frequency (Fc) and peak inspiratory airway pressures (Paw) were measured in five unanesthetized tracheostomized infant monkeys during various intensities of inspiratory resistive loaded breathing (IRL) until either 1) ventilatory failure occurred (failed trial) or 2) normocapnia was sustained for 1 h (successful trial). During successful trials VE and arterial PCO2 (PaCO2) were sustained at base-line levels, and an increase in peak integrated diaphragmatic EMG activity and peak inspiratory Paw occurred. In contrast, during ventilatory failure runs, VE decreased and PaCO2 rose compared with their respective base-line values. The fall in VE occurred secondary to a significant decline in breathing frequency. Tidal volume was sustained at base-line levels during all trials (both successful and failed groups). Inspiratory Paw's and peak moving time average EMG were sustained at elevated levels during ventilatory failure runs, suggesting that the respiratory muscles did not fail as pressure generators. Furthermore, the EMG Fc did not change from base line during either successful or failed trials. These data suggest that peripheral muscle fatigue did not occur, although in the absence of a more direct test of muscle performance, i.e., a force-frequency curve, we cannot rule out the possibility that a component of peripheral failure contributed to our results. Ventilatory failure during severe IRL in the infant monkey was most clearly associated with an alteration in the respiratory center timing mechanism, i.e., such failure was a function of a decline in respiratory frequency.  相似文献   

14.
Expiratory muscle fatigue in normal subjects   总被引:4,自引:0,他引:4  
We examined expiratory muscle fatigue during expiratory resistive loading in 11 normal subjects. Subjects breathed against expiratory resistances at their own breathing frequency and tidal volume until exhaustion or for 60 min. Respiratory muscle strength was assessed from both the maximum static expiratory and inspiratory mouth pressures (PEmax and PImax). At the lowest resistance, PEmax and PImax measured after completion of the expiratory loaded breathing were not different from control values. With higher resistance, both PEmax and PImax were decreased (P less than 0.05), and the decrease lasted for greater than or equal to 60 min. The electromyogram high-to-low frequency power ratio for the rectus abdominis muscle decreased progressively during loading (P less than 0.01), but the integrated EMG activity did not change during recovery. Transdiaphragmatic pressure during loading was increased 3.6-fold compared with control (P less than 0.05). These findings suggest that expiratory resistive loaded breathing induces muscle fatigue in both expiratory and inspiratory muscles. Fatigue of the expiratory muscles can be attributed directly to the high work load and that of the inspiratory muscles may be related to increased work due to shortened inspiratory time.  相似文献   

15.
We examined the effects of expiratory resistive loads of 10 and 18 cmH2O.l-1.s in healthy subjects on ventilation and occlusion pressure responses to CO2, respiratory muscle electromyogram, pattern of breathing, and thoracoabdominal movements. In addition, we compared ventilation and occlusion pressure responses to CO2 breathing elicited by breathing through an inspiratory resistive load of 10 cmH2O.l-1.s to those produced by an expiratory load of similar magnitude. Both inspiratory and expiratory loads decreased ventilatory responses to CO2 and increased the tidal volume achieved at any given level of ventilation. Depression of ventilatory responses to Co2 was greater with the larger than with the smaller expiratory load, but the decrease was in proportion to the difference in the severity of the loads. Occlusion pressure responses were increased significantly by the inspiratory resistive load but not by the smaller expiratory load. However, occlusion pressure responses to CO2 were significantly larger with the greater expiratory load than control. Increase in occlusion pressure observed could not be explained by changes in functional residual capacity or chemical drive. The larger expiratory load also produced significant increases in electrical activity measured during both inspiration and expiration. These results suggest that sufficiently severe impediments to breathing, even when they are exclusively expiratory, can enhance inspiratory muscle activity in conscious humans.  相似文献   

16.
Because the first stage of expiration or "postinspiration" is an active neurorespiratory event, we expect some persistence of diaphragm electromyogram (EMG) after the cessation of inspiratory airflow, as postinspiratory inspiratory activity (PIIA). The costal and crural segments of the mammalian diaphragm have different mechanical and proprioceptive characteristics, so postinspiratory activity of these two portions may be different. In six canines, we implanted chronically EMG electrodes and sonomicrometer transducers and then sampled EMG activity and length of costal and crural diaphragm segments at 4 kHz, 10.2 days after implantation during wakeful, resting breathing. Costal and crural EMG were reviewed on-screen, and duration of PIIA was calculated for each breath. Crural PIIA was present in nearly every breath, with mean duration 16% of expiratory time, compared with costal PIIA with duration -2. 6% of expiratory time (P < 0.002). A linear regression model of crural centroid frequency vs. length, which was computed during the active shortening of inspiration, did not accurately predict crural EMG centroid frequency values at equivalent length during the controlled relaxation of postinspiration. This difference in activation of crural diaphragm in inspiration and postinspiration is consistent with a different pattern of motor unit recruitment during PIIA.  相似文献   

17.
The aim of our study was to examine the effect of posture on inspiratory muscle activity response to hypercapnia. Recent research has revealed that in normal subjects the activation of the rib cage muscles and of the diaphragm is actually greater in the upright than in the supine position during resting tidal breathing. In this study we examined whether the upright position necessarily entails a greater activation of the inspiratory muscles also under conditions of ventilatory stress. For this purpose we compared the responses to CO2-rebreathing in the supine and sitting positions in five volunteers, by simultaneously recording the electromyogram of the diaphragm (EMGdi) and the intercostal muscles (EMGint). The electromyogram was recorded by means of surface electrodes to measure the EMG amplitude. While the slopes of ventilatory (VE) response to increasing arterial CO2 tension (PaCO2) were similar in the two positions, both the EMGdi-VE and EMGint-VE relationship showed steeper slopes in the supine than in the sitting position. In each CO2 run the increases in EMGdi were linearly related to those in EMGint. This relationship was not affected by the body position. These results suggested that, in spite of similar ventilatory responses to CO2-rebreathing in the lying and sitting positions, the supine position, in humans, required a higher activation of the inspiratory muscles.  相似文献   

18.
Muscle atonia is a feature of normal rapid-eye-movement sleep (REMS). The suppression of accessory respiratory muscle activity has been investigated and a role for sleep-disordered breathing hypothesized, but the suppression of diaphragmatic activity has rarely been considered. We hypothesized that the activity of the diaphragm was suppressed by an area of the dorsolateral pons during REMS. Lesions in this region have previously been shown to abolish the atonia of REMS. The diaphragmatic electromyogram (EMG) activity was analyzed in five naturally sleeping cats before and after pontine lesions leading to REMS without atonia. Although respiratory timing parameters were not altered by the lesion, the inspiratory rate of rise was significantly increased in all cats, and the brief pauses (40-100 ms) in the diaphragmatic EMG normally seen in REMS were virtually abolished. We conclude that the dorsolateral pons has a role in suppressing diaphragmatic activation during REMS. This suppression affects the average rate of rise of diaphragmatic activity and also leads to brief intermittent complete cessation of ongoing muscle activity. These decrements in diaphragm activity could jeopardize ventilation during REMS.  相似文献   

19.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

20.
Because the inspiratory rib cage muscles are recruited during inspiratory resistive loaded breathing, we hypothesized that such loading would preferentially fatigue the rib cage muscles. We measured the pressure developed by the inspiratory rib cage muscles during maximal static inspiratory maneuvers (Pinsp) and the pressure developed by the diaphragm during maximal static open-glottis expulsive maneuvers (Pdimax) in four human subjects, both before and after fatigue induced by an inspiratory resistive loaded breathing task. Tasks consisted of maintaining a target esophageal pressure, breathing frequency, and duty cycle for 3-5 min, after which the subjects maintained the highest esophageal pressure possible for an additional 5 min. After loading, Pinsp decreased in all subjects [control, -128 +/- 14 (SD) cmH2O; with fatigue, -102 +/- 18 cmH2O; P less than 0.001, paired t test]. Pdimax was unchanged (control, -192 +/- 23 cmH2O; fatigue, -195 +/- 27 cmH2O). These data suggest that 1) inability to sustain the target during loading resulted from fatigue of the inspiratory rib cage muscles, not diaphragm, and 2) simultaneous measurement of Pinsp and Pdimax may be useful in partitioning muscle fatigue into rib cage and diaphragmatic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号