首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The muscarinic agonist, acetylcholine (ACh), stimulates phospholipase D (PLD) activity in tracheal smooth muscle cells. Direct activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) also stimulates PLD in this tissue. Activation of ACh-induced PLD was inhibited by the tyrosine kinase inhibitor genistein in a concentration-dependent manner. Presently known isoforms of PLD, PLD1 and PLD2, were identified in tracheal smooth muscle and their activation-induced phosphorylation status studied. Both ACh and PMA increased phosphorylation of PLD1 that was significantly blocked by genistein or the PKC inhibitor calphostin C. PLD2 phosphorylation was not detected in the present experiments. Western blots probed with an anti-phosphotyrosine antibody indicate that PLD1 in this tissue is phosphorylated on tyrosine residues after ACh or PMA stimulation. Tyrosine phosphorylation of PLD1 was blocked by genistein and calphostin C. No tyrosine residues were phosphorylated on PLD2. Taken together, these results demonstrate that porcine tracheal smooth muscle cells express both isoforms PLD1 and PLD2. However, on muscarinic activation only PLD1 in this tissue is phosphorylated by PKC via a tyrosine-kinase-dependent pathway.  相似文献   

2.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

3.
We are probing the regulation of phosphatidylcholine (PC) synthesis by angiotensin II. In the accompanying paper, we showed that manipulation of the lipid second messengers, arachidonic acid or hydroxyeicosatetraenoic acid, produced downstream of the angiotensin AT1a receptor did not affect the PC synthesis rates in a manner consistent with direct activation of the rate limiting enzyme in the pathway, CTP:phosphocholine cytidylyltransferase (CCT). However, suppression of diacylglycerol (DAG) production with an inhibitor of phospholipase C-beta reduced angiotensin-dependent PC synthesis as well as ERK1/2 phosphorylation. Here, we show that the stimulation of PC synthesis and activation of CCT by angiotensin requires a signaling pathway that involves protein kinase C and ERK1/2. The inhibitors bis-indolylmaleimide I and PD98059 blocked ERK1/2 phosphorylation and completely eliminated angiotensin stimulation of the CCT-catalyzed reaction and PC synthesis. Exogenous addition of DAG using a lipid vesicle delivery system exactly mimicked the kinetics of angiotensin-promoted PC synthesis, suggesting that this mode of DAG delivery can effectively substitute for the DAG generated downstream of the activated AT1a receptor. Moreover, exogenous DAG activated ERK1/2, and the activation of PC synthesis by DAG was blocked by inhibition of protein kinase C and MEK. These data suggest that angiotensin-dependent DAG and the exogenously supplied DAG stimulate PC synthesis, not solely by direct action on CCT, but via a signaling pathway involving protein kinase C and ERK1/2. Angiotensin did not alter the net phosphorylation state of CCT as probed by immunoprecipitation of 32P-labeled CCT. Angiotensin stimulation of ERK1/2 likely mediates effects on CCT via a process other than CCT dephosphorylation.  相似文献   

4.
To assess the contribution of the intracellular domain tyrosine residues to the signaling capacity of fibroblast growth factor receptor 1 (FGFR1), stably transfected chimeras bearing the ectodomain of the platelet-derived growth factor receptor (PDGFR) and the endodomain of FGFR1 were systematically altered by a tyrosine to phenylalanine bloc and individual conversions. The 15 tyrosine residues of the endodomain of this construct (PFR1) were divided into four linear segments (labeled A, B, C, and D) that contained 4, 4, 2, and 5 tyrosine residues, respectively. When stimulated by platelet-derived growth factor, derivatives in which the A, B, or A + B blocs of tyrosines were mutated were about two-thirds as active as the unmodified chimera at 48 h but achieved full activity by 96 h in a neurite outgrowth assay in transfected PC12 cells. Elimination of only the two activation loop tyrosines (C bloc) also inactivated the receptor. All derivatives in which 4 (or 5) of the D bloc tyrosines were mutated were inactive in producing differentiation but showed low levels of kinase activity in in vitro assays. Derivatives in which 1, 2, or 3 tyrosines of the D bloc in different combinations were systematically changed demonstrated that 2 residues (Tyr(677) and Tyr(701), using hFGFR1 numbering) were essential for bioactivity, but the remaining 3 residues, including Tyr(766), the previously identified site for phospholipase C gamma (PLC gamma) activation, were not. Differentiation activity was paralleled by the activation (phosphorylation) of FRS2, SOS, and ERK1/2. PLC gamma activity was dependent on the presence of Tyr(766) but also required Tyr(677) and/or Tyr(701). Although fully active chimeras did not require PLC gamma, the responses of chimeras showing reduced activation of FRS2 were significantly enhanced by this activity. These results establish that PFR1 does not utilize any tyrosine residues, phosphorylated or not, to activate FRS2. However, it does require Tyr(677) and/or Tyr(701), which may function to stabilize the active conformation directly or indirectly.  相似文献   

5.
6.
Stimulation of rat basophilic leukemia (RBL-2H3) cells with oligomeric IgE elicited a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1 on tyrosine residues. Prior incubation of RBL-2H3 cells with a protein tyrosine kinase inhibitor, herbimycin A, prevented the tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of phosphatidylinositol 4,5-bisphosphate induced by oligomeric IgE. However, 5'-(N-ethyl)carboxamidoadenosine, which is known to activate PLC through a G protein, did not elicit tyrosine phosphorylation of PLC-gamma 1. These results, together with previous findings showing that tyrosine phosphorylation of PLC-gamma 1 enhances its catalytic activity, indicate that phosphorylation of PLC-gamma 1 by a nonreceptor tyrosine kinase is the mechanism by which IgE receptor aggregation triggers PLC activation.  相似文献   

7.
Abstract: Incubation of rat pheochromocytoma PC12 cells with 4β-phorbol-12β-myristate-13α-acetate (PMA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), or forskolin, an activator of adenylate cyclase, is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase. Neither the activation nor increased phosphorylation of tyrosine hydroxylase produced by PMA is dependent on extracellular Ca2+. Both activation and phosphorylation of the enzyme by PMA are inhibited by pretreatment of the cells with trifluo-perazine (TFP). Treatment of PC 12 cells with l-oleoyl-2-acetylglycerol also leads to increases in the phosphorylation and enzymatic activity of tyrosine hydroxylase; 1, 2-diolein and 1, 3-diolein are ineffective. The effects of forskolin on the activation and phosphorylation of the enzyme are independent of Ca2+ and are not inhibited by TIT5. Forskolin elicits an increase in cyclic AMP levels in PC 12 cells. The increases in both cyclic AMP content and the enzymatic activity and phosphorylation of tyrosine hydroxylase following exposure of PC 12 cells to different concentrations of forskolin are closely correlated. In contrast, cyclic AMP levels do not increase in cells treated with PMA. Tryptic digestion of the phosphorylated enzyme isolated from untreated cells yields four phosphopeptides separable by HPLC. Incubation of the cells in the presence of the Ca2+ ionophore ionomycin increases the phosphorylation of three of these tryptic peptides. However, in cells treated with either PMA or forskolin, there is an increase in the phosphorylation of only one of these peptides derived from tyrosine hydroxylase. The peptide phosphorylated in PMA-treated cells is different from that phosphorylated in forskolin-treated cells. The latter peptide is identical to the peptide phosphorylated in dibutyryl cyclic AMP-treated cells. These results indicate that tyrosine hydroxylase is activated and phosphorylated on different sites in PC 12 cells exposed to PMA and forskolin and that phosphorylation of either of these sites is associated with activation of tyrosine hydroxylase. The results further suggest that cyclic AMP-dependent and Ca2+/ phospholipid-dependent protein kinases may play a role in the regulation of tyrosine hydroxylase in PC 12 cells.  相似文献   

8.
Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.  相似文献   

9.
The effect of phosphoinositide depletion on focal adhesion kinase (FAK) signaling was investigated in two neuronal cell lines. Treatment of either SH-SY5Y neuroblastoma cells or PC12 cells with wortmannin, at a concentration that inhibits phosphatidylinositol 4-kinase activity, led to a selective depletion of phosphatidylinositol 4-phosphate without significantly altering phosphatidylinositol 4,5-bisphosphate (PIP2) content. An enhanced tyrosine phosphorylation of FAK elicited by agonist occupancy of phospholipase C-coupled receptors (muscarinic cholinergic in SH-SY5Y neuroblastoma or bradykinin in PC12 cells) was blocked completely by wortmannin. Under the above conditions, phosphoinositide resynthesis was prevented, and as a consequence, receptor stimulation led to a marked depletion of PIP2. In contrast, the increased tyrosine phosphorylation of FAK elicited by agents that do not activate phospholipase C (phenylarsine oxide, lysophosphatidic acid, or phorbol ester) persisted in the presence of wortmannin. However, the ability of these agents to elicit an increase in FAK phosphorylation was also prevented if PIP2 was depleted by activation of a phospholipase C-coupled receptor in the presence of wortmannin. The results suggest that agonist-sensitive pools of PIP2 must be maintained for FAK signaling to occur in response to a mechanistically diverse range of stimuli.  相似文献   

10.
Vascular endothelial cell growth factor-A(165) (VEGF-A(165)) is critical for angiogenesis. Although protein kinase C-mediated protein kinase D(PKD)activation was implicated in the response, the detailed mechanism remains unclear. In this study, we found that VEGF-A(165)-stimulated tyrosine phosphorylation of PKD and the dominant negative mutant of PKD, PKD(Y463F), inhibited VEGF-A(165)-induced human umbilical vein endothelial cell (HUVEC) proliferation. In addition, PKD(S738A/S742A) overexpression inhibited VEGF-induced HUVEC migration. Furthermore, knockdown of PKD by its specific small interfering RNA inhibited VEGF-induced HUVEC proliferation and migration. Moreover transfection of PKD(Y463F), PKD(S738A/S742A), or PKD-small interfering RNA blocked VEGF-induced angiogenesis in vivo. Our signaling experiments show that KDR not Flt-1 mediated PKD tyrosine phosphorylation and KDR tyrosine residues 951 and 1059 were required for VEGF-A(165)-stimulated PKD serine and tyrosine phosphorylation, respectively. Whereas G protein Gbetagamma subunits were required for both PKD serine phosphorylation and tyrosine phosphorylation, intracellular Ca(2+) mobilization was required for VEGF-A(165)-stimulated PKD tyrosine phosphorylation and phospholipase C (PLC) activity was required for PKD serine phosphorylation. Surprisingly, the PLC inhibitor did not inhibit PKD tyrosine phosphorylation. Instead, PKD tyrosine 463 was required for VEGF-A(165)-stimulated PLCgamma tyrosine phosphorylation. Moreover, PKD interacted with PLCgamma even in unstimulated cells, and PKD tyrosine 463 phosphorylation was not required for this interaction. Together, we demonstrate that PKD interacts with PLCgamma and becomes tyrosine phosphorylated upon VEGF stimulation, leading to PLCgamma activation and angiogenic response of VEGF-A(165).  相似文献   

11.
The aim of this study was to investigate the involvement of calmodulin in phospholipase D activation in SH-SY5Y cells. Cells prelabelled with [3H]-palmitic acid were incubated with calmodulin antagonists and/or other compounds. Phosphatidylethanol, a specific marker for phospholipase D activity, and phosphatidic acid were analysed. The calmodulin antagonists, calmidazolium and trifluoperazine, induced an extensive increase in phosphatidylethanol formation, and thus increased basal phospholipase D activity, in a dose- and time-dependent manner. The effect of calmidazolium on carbachol-induced activation of muscarinic receptors was also studied. Calmidazolium did not significantly affect the amount of phosphatidylethanol formed following carbachol addition. However, taking into account the increase in basal activity observed after calmidazolium addition, calmidazolium probably inhibits the muscarinic receptor-induced phospholipase D activation. In addition to phosphatidylethanol, basal phosphatidic acid levels were also increased after calmidazolium and trifluoperazine addition. Incubation with calmidazolium (10 microM) for 10 min induced a two-fold increase in phosphatidic acid. The calmidazolium-induced increase in basal phospholipase D activity was not affected by the protein kinase inhibitors H7 and staurosporine. On the other hand tyrosine kinase inhibitors abolished the calmidazolium-induced activation of phospholipase D. Calmidazolium also induced tyrosine phosphorylation in parallel to the phospholipase D activation. In conclusion, our data indicate that calmodulin antagonists induce phospholipase D activity in SH-SY5Y cells via a tyrosine kinase dependent pathway. This may point to a negative control of phospholipase D by calmodulin although a calmodulin-independent mechanism cannot be excluded. Calmodulin antagonists may be useful tools to further elucidate the mechanisms of phospholipase D regulation.  相似文献   

12.
We have previously demonstrated that the steroid hormone 1 alpha,25(OH)(2)-vitamin D(3)[1 alpha,25(OH)(2)D(3)] stimulates the production of inositol trisphosphate (InsP(3)), the breakdown product of phosphatidylinositol 4,5-biphosphate (PtdInsP(2)) by phospholipase C (PtdIns-PLC), and activates the cytosolic tyrosine kinase c-Src in skeletal muscle cells. In the present study we examined whether 1 alpha,25(OH)(2)D(3) induces the phosphorylation and membrane translocation of PLC gamma and the mechanism involved in this isozyme activation. We found that the steroid hormone triggers a significant phosphorylation on tyrosine residues of PLC gamma and induces a rapid increase in membrane-associated PLC gamma immunoreactivity with a time course that correlates with that of phosphorylation in muscle cells. Genistein, a tyrosine kinase inhibitor, blocked the phosphorylation of PLC gamma. Inhibition of 1 alpha,25(OH)(2)D(3)-induced c-Src activity by its specific inhibitor PP1 or muscle cell transfection with an antisense oligodeoxynucleotide directed against c-Src mRNA, prevented hormone stimulation of PLC gamma tyrosine phosphorylation. The isozyme phosphorylation is also blocked by both wortmannin and LY294002, two structurally different inhibitors of phosphatidyl inositol 3-kinase (PtdIns3K), the enzyme that produces PtdInsP(3) known to activate PLC gamma isozymes specifically by interacting with their SH2 and pleckstrin homology domains. The hormone also increases the physical association of c-Src and PtdIns3K with PLC gamma and induces a c-Src-dependent tyrosine phosphorylation of the p85 regulatory subunit of PtdIns3K. The time course of hormone-dependent PLC gamma phosphorylation closely correlates with the time course of its redistribution to the membrane, suggesting that phosphorylation and redistribution to the membrane of PLC gamma are two interdependent events. 1 alpha,25(OH)(2)D(3)-induced membrane translocation of PLC gamma was prevented to a great extent by c-Src and PtdIns3K inhibitors, PP1 and LY294002. Taken together, the present data indicates that the cytosolic tyrosine kinase c-Src and PtdIns 3-kinase play indispensable roles in 1 alpha,25(OH)(2)D(3) signal transduction cascades leading to PLC gamma activation.  相似文献   

13.
Glucosylceramide-based glycosphingolipids have been previously demonstrated to regulate negatively the formation of inositol 1,4,5-trisphosphate by phospholipase C-gamma1. In the present study, the depletion of endogenous glucosylceramide by D-t-EtDO-P4 in cultured ECV304 cells induced autophosphorylation of Src kinase at tyrosine residue 418 within the catalytic loop and dephosphorylation of Src kinase at tyrosine residues 529 within the carboxyl-terminal regulatory region. Phosphotransferase activities of Src kinase were also induced in the glucosylceramide-depleted cells. c-Src kinase activity and phosphorylations at Src Tyr-418 and epidermal growth factor (EGF) receptor Tyr-1068 were significantly enhanced by bradykinin in response to 100 nm D-t-EtDO-P4 compared with control cells. The phosphorylation and dephosphorylation on Tyr-418 and Tyr-529 residues of c-Src were reversed by treatment of 4-amino-5-(4-chlorophenyl)-7-t-butyl(pyrazolo)[3,4-d]pyrimidine (PP2), an inhibitor of Src kinase, in control cells. Glucosylceramide-depleted cells resisted treatment with PP2, and both phosphorylation of Tyr-418 and dephosphorylation of Tyr-529 induced by depletion of glucosylceramide were maintained. Compared with untreated cells, tyrosine phosphorylation of phospholipase C-gamma1 was enhanced by EGF stimulation in glucosylceramide-depleted cells, associated with enhanced tyrosine phosphorylation of the EGF receptor at Tyr-1068 and Tyr-1086 stimulated by EGF. The Src inhibitor, PP2, significantly blocked EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 in control cells, whereas in glucosylceramide-depleted cells, suppression of Src kinase activity by PP2 toward EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 was less significant. Thus the activation of Src kinase by depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells is a critical up-stream event in the activation of phospholipase C-gamma1.  相似文献   

14.
The relationship between tyrosine phosphorylation and activation of phospholipase D1 (PLD1) by v-Src was examined. Co-expression of v-Src and PLD1 in COS-7 cells resulted in increased activity and marked tyrosine phosphorylation of PLD1. PLD activity was increased in membranes or immunoprecipitates prepared from these cells. Dephosphorylation of the immunoprecipitated enzyme by tyrosine phosphatase or phosphorylation by c-Src produced no changes in its activity. Tyrosine phosphorylation induced by v-Src caused a shift of the enzyme from the Triton-soluble to the Triton-insoluble fraction. v-Src and PLD1 could be co-immunoprecipitated from cells co-expressing these and were co-localized in the perinuclear region as assessed by immunofluorescence. Mutation of the palmitoylation sites of PLD1 significantly reduced tyrosine phosphorylation by v-Src. It is concluded that tyrosine phosphorylation of PLD1 by v-Src does not per se alter its activity. It is proposed that activation of PLD1 by v-Src in vivo may involve association/colocalization of the two proteins.  相似文献   

15.
NGF treatment of PC12 cells results in the rapid activation of MAP2 kinase. We report here that the induction of enzyme activity was correlated with the phosphorylation of MAP2 kinase, detected by metabolic labeling of the enzyme and with anti-phosphotyrosine antibodies. NGF stimulated the phosphorylation of MAP2 kinase on tyrosine, as well as serine and threonine residues. Western blot analysis using a polyclonal anti-phosphotyrosine antibody demonstrated that the tyrosine phosphorylation of MAP2 kinase was maximal within 2 min following NGF exposure and preceded the induction of MAP2 kinase activity. The NGF-stimulated tyrosine phosphorylation of an identified substrate provides direct evidence for the participation of a tyrosine kinase in the mechanism of action of NGF.  相似文献   

16.
PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.  相似文献   

17.
We showed that erythropoietin induced rapid glycosylphosphatidylinositol (GPI) hydrolysis and tyrosine phosphorylation of phospholipase C (PLC)-gamma(2) in FDC-P1 cells transfected with the wild-type erythropoietin-receptor. Erythropoietin-induced tyrosine phosphorylation of PLC-gamma(2) was time- and dose-dependent. By using FDC-P1 cells transfected with an erythropoietin receptor devoid of tyrosine residues, we showed that both effects required the tyrosine residues of intracellular domain on the erythropoietin receptor. Erythropoietin-activated PLC-gamma(2) hydrolyzed purified [(3)H]GPI indicating that GPI hydrolysis and PLC-gamma(2) activation under erythropoietin stimulation were correlated. Results obtained on FDC-P1 cells transfected with erythropoietin receptor mutated on tyrosine residues suggest that tyrosines 343, 401, 464, and/or 479 are involved in erythropoietin-induced GPI hydrolysis and tyrosine phosphorylation of PLC-gamma(2), whereas tyrosines 429 and/or 431 seem to be involved in an inhibition of both effects. Thus, our results suggest that erythropoietin regulates GPI hydrolysis via tyrosine phosphorylation of its receptor and PLC-gamma(2) activation.  相似文献   

18.
Abstract: The mechanism for hydrogen peroxide (H2O2)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled PC12 cells. In the presence of butanol, H2O2 caused a great accumulation of [3H]phosphatidylbutanol in a concentration- or time-dependent manner. However, treatment with H2O2 of cell lysates exerted no effect on PLD activity. Treatment with H2O2 had only a marginal effect on phospholipase C (PLC) activation. A protein kinase C (PKC) inhibitor, Ro 31-8220, did not inhibit but rather slightly enhanced H2O2-induced PLD activity. Thus, H2O2-induced PLD activation is considered to be independent of the PLC-PKC pathway in PC12 cells. In contrast, pretreatment with tyrosine kinase inhibitor herbimycin A, genistein, or ST638 resulted in a concentration-dependent inhibition of H2O2-induced PLD activation. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after the H2O2 treatment and tyrosine phosphorylation of these proteins was inhibited by these tyrosine kinase inhibitors. Moreover, depletion of extracellular Ca2+ abolished H2O2-induced PLD activation and protein tyrosine phosphorylation. Extracellular Ca2+ potentiated H2O2-induced PLD activation in a concentration-dependent manner. Taken together, these results suggest that a certain Ca2+-dependent protein tyrosine kinase(s) somehow participates in H2O2-induced PLD activation in PC12 cells.  相似文献   

19.
PC12 cells contain at least three immunologically distinct phospholipase C (PLC) isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of PC12 cells with nerve growth factor (NGF) leads to an increase in the phosphorylation of PLC-gamma, but not of PLC-beta or PLC-delta. This increase can be seen in as little as 1 minute. The increased phosphorylation occurs on both serine and tyrosine residues, with the major increase being in the former. This result suggests the possibility that the NGF-dependent increase in phosphoinositide hydrolysis in PC12 cells is due to selective phosphorylation of PLC-gamma by serine and tyrosine protein kinases associated with the NGF receptor.  相似文献   

20.
The linker for activation of T cells (LAT) is essential for signaling through the T cell receptor (TCR). Following TCR stimulation, LAT becomes tyrosine-phosphorylated, creating docking sites for other signaling proteins such as phospholipase C-gamma(1) (PLC-gamma(1)), Grb2, and Gads. In this study, we have attempted to identify the critical tyrosine residues in LAT that mediate TCR activation-induced mobilization of intracellular Ca(2+) and activation of the MAP kinase Erk2. By using the LAT-deficient Jurkat derivative, J.CaM2, stable cell lines were established expressing various tyrosine mutants of LAT. We show that three specific tyrosine residues (Tyr(132), Tyr(171), and Tyr(191)) are necessary and sufficient to achieve a Ca(2+) flux following TCR stimulation. These tyrosine residues function by reconstituting PLC-gamma(1) phosphorylation and recruitment to LAT. However, these same tyrosines can only partially reconstitute Erk activation. Full reconstitution of Erk requires two additional tyrosine residues (Tyr(110) and Tyr(226)), both of which have the Grb2-binding motif YXN. This reconstitution of Erk activation requires that the critical tyrosine residues be on the same molecule of LAT, suggesting that a single LAT molecule nucleates multiple protein-protein interactions required for optimal signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号