首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The skin plays a role in conditioning mechanical indentation into distributions of stress/strain that mechanoreceptors convert into neural signals. Solid mechanics methods have modelled the skin to predict the in vivo neural response from mechanoreceptors. Despite their promise, current models cannot explain the role that anatomical positioning and receptor organ morphology play in producing differences in neural response. This work hypothesises that the skin's intermediate ridges may help explain, in part, the sensitivity of slowly adapting type I (SA-I) mechanoreceptors to edge stimuli. METHOD: Two finite-element models of the fingertip were built, validated and used to analyse the functionality of the intermediate ridges. One of the two-dimensional, cross-sectional models included intermediate ridges, while the other did not. The analysis sought to determine if intermediate ridges (1) increase the magnitude of strain energy density (SED) near the SA-I location and (2) help differentiate one 2.0-mm indenter from two 0.5-mm wide indenters with a 1.0-mm gap. RESULTS: Higher concentrations of SED were found near the tips of the intermediate ridges, the anatomical location that coincides with the SA-I receptors. This first result suggested that the location of the SA-Is in the stiffer epidermal tissue helps magnify their response to edge stimuli. The second result was that both models were equally capable of predicting the spatial structure within the in vivo neural responses, and therefore the addition of intermediate ridges did not help in differentiating the indenters. CONCLUSION: The finding, a 15%-35% increase in response when the sampling point lies within the stiffer tissue at the same depth, seeks to inform the positioning of force sensors in robotic skin substrates.  相似文献   

2.
The sense of touch is ubiquitous in vertebrates and relies upon the detection of mechanical forces in the skin by the tactile end-organs of low-threshold mechanoreceptors. Significant progress has been made in understanding the mechanism of tactile end-organ function using mammalian models, but the detailed mechanics of touch sensation in Meissner and Pacinian corpuscles, the principal detectors of transient touch and vibration, remain obscure. The avian homologs of these corpuscles present an opportunity for functional study of mechanosensation in these structures, due to their relative accessibility and high abundance in the bill skin of tactile-foraging waterfowl. Here, we review the current knowledge of mechanosensory end-organs in birds and highlight the utility of the avian model to understand general principles of touch detection in the glabrous skin of vertebrates.  相似文献   

3.
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.  相似文献   

4.
Cutaneous mechanoreceptors transduce different tactile stimuli into neural signals that produce distinct sensations of touch. The Pacinian corpuscle (PC), a cutaneous mechanoreceptor located deep within the dermis of the skin, detects high frequency vibrations that occur within its large receptive field. The PC is comprised of lamellae that surround the nerve fiber at its core. We hypothesized that a layered, anisotropic structure, embedded deep within the skin, would produce the nonlinear strain transmission and low spatial sensitivity characteristic of the PC. A multiscale finite-element model was used to model the equilibrium response of the PC to indentation. The first simulation considered an isolated PC with fiber networks aligned with the PC’s surface. The PC was subjected to a 10 μm indentation by a 250 μm diameter indenter. The multiscale model captured the nonlinear strain transmission through the PC, predicting decreased compressive strain with proximity to the receptor’s core, as seen experimentally by others. The second set of simulations considered a single PC embedded epidermally (shallow) or dermally (deep) to model the PC’s location within the skin. The embedded models were subjected to 10 μm indentations at a series of locations on the surface of the skin. Strain along the long axis of the PC was calculated after indentation to simulate stretch along the nerve fiber at the center of the PC. Receptive fields for the epidermis and dermis models were constructed by mapping the long-axis strain after indentation at each point on the surface of the skin mesh. The dermis model resulted in a larger receptive field, as the calculated strain showed less indenter location dependence than in the epidermis model.  相似文献   

5.
Touch sense     
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.  相似文献   

6.
Softness sensation is one of primitive tactile textures. While the psychophysical characteristics of softness sensation have been thoroughly studied, it is lack of a deep understanding of the underlying neuromechanical principles. On the stimulus–response processes of human fingerpad touching fabrics and the physiological properties of slowly adapting type I (SAIs) cutaneous mechanoreceptors within fingerpad, a fabric-skin-receptor coupling model was built and validated. By the fabric-skin-receptor model a series of numerical experiments was conducted, and how the evoked neural responses of cutaneous mechanoreceptors change with the composite compliance of both fingerpad skin and the materials in contact was investigated. The results indicated that the evoked neural responses of populations of cutaneous mechanoreceptors by the physical stimulus from fabrics were nearly proportional to the perceived softness magnitude, and nonlinearly increased and then decreased with the effective elastic modulus of fabrics or the relative elastic modulus of fabrics to soft tissues within fingerpad, where the nonlinear inflection point depended on the touching force level. Therefore, it concluded that the tactile judgment of the physical information for softness sensation of objects was an encoding of neural responses of populations of SAIs cutaneous mechanoreceptors, and the physical information depended on the mechanical interaction of fingerpad and objects in contact.  相似文献   

7.
The mechanics of the lung parenchyma is studied using models comprised of line members interconnected to form 3-D cellular structures. The mechanical properties are represented as elastic constants of a continuum. These are determined by perturbing each individual cell from a reference state by an increment in stress which is superimposed upon the uniform stretching forces initially present in the members due to the transpulmonary pressure. A force balance on the distorted structure, together with a force-deformation law for the members, leads to a calculation of the strain increments of the members. Predictions based on the analysis of the 3-D isotropic dodecahedron are in good agreement with experimental values for the Young's, shear, and bulk moduli reported in the literature. The model provides an explanation for the dependence of the elastic moduli on transpulmonary pressure, the geometrical details of the structure, and the stress-strain law of the tissue.  相似文献   

8.
Variable friction tactile displays have been recently used to render virtual textures and gratings. Neural basis of perceptual mechanism of detection of edge-like features resulting in discrimination of virtual gratings during active touching these tactile actuators is studied using a finite-element biomechanical model of human fingertip. The predicted neural response of the mechanoreceptors, i.e. the computed strain energy density at the location of selected mechanoreceptors as a measure of neural discharge rate of the corresponding receptors, to local reduction of friction between fingerpad and surface are shown to exhibit a similar shape as the edge enhancement phenomenon, particularly in a sudden burst at the boundary of variable friction regions. This phenomenon is supposed to account for the illusion of virtual edges rendered through the modification of contact forces. The presence of this sudden burst under varied model parameters was investigated. It was shown that while the appearance of this phenomenon in simulation results was invariant to model parameters, associated alteration of the edge enhancement ratio might be considered for the purpose of the tuning of the variable friction tactile display.  相似文献   

9.
Understanding how skin microstructure affects slowly adapting type I (SA-I) mechanoreceptors in encoding edge discontinuities is fundamental to understanding our sense of touch. Skin microstructure, in particular papillary ridges, has been thought to contribute to edge and gap sensation. Cauna's 1954 model of touch sensibility describes a functional relationship between papillary ridges and edge sensation. His lever arm model proposes that the papillary ridge (exterior fingerprint line) and underlying intermediate ridge operate as a single unit, with the intermediate ridge acting as a lever which magnifies indentation imposed at the papillary ridge. This paper contests the validity of the lever arm model. While correctly representing the anatomy, this mechanism inaccurately characterizes the function of the papillary ridges. Finite element analysis and assessment of the critical anatomy indicate that papillary ridges have little direct effect on how SA-I receptors respond to the indentation of static edges. Our analysis supports a revised (stiff shell-elastic bending support) interpretation where the epidermis is split into two major layers with a stiff, deformable shell over an elastic bending support. Recent physiological, electrophysiological, and psychophysical findings support our conclusion that the function of the intermediate ridge is distinct from the function of the papillary ridge.  相似文献   

10.
Mainly the skin senses touch and warmth have been investigated. It is shown that the decision model describes the experimental data better than the threshold model. The experiments lead to the assumption that an internal noise exists, which is a neural activity being undistinguishable from the neural activity caused by small stimuli and which adds to the neural activity caused by the stimulus. The probability distribution of this internal noise can be considered to be gaussian. The relation between stimulus and neural activity is alinear for the touch sense. The question of whether noise of a multiplicative nature must be assumed is discussed.  相似文献   

11.
Percutaneous implants are a family of devices that penetrate the skin and all suffer from the same problems of infection because the skin seal around the device is not optimal. Contributing to this problem is the mechanical discontinuity of the skin/device interface leading to stress concentrations and micro-trauma that chronically breaks any seal that forms. In this paper, we have quantified the mechanical behavior of human skin under low-magnitude shear loads over physiological relevant frequencies. Using a stress-controlled rheometer, we have performed isothermal (37 degrees C) frequency response experiments between 0.628 and 75.39rad/s at 0.5% and 0.04% strain on whole skin and dermis-only, respectively. Step-stress experiments of 5 and 10Pa shear loads were also conducted as were strain sweep tests (6.28rad/s). Measurements were made of whole human skin and skin from which the epidermis was removed (dermis-only). At low frequencies (0.628-10rad/s), the moduli are only slightly frequency dependent, with approximate power-law scaling of the moduli, G' approximately G' approximately omega(beta), yielding beta=0.05 for whole skin and beta=0.16 for dermis-only samples. Step-stress experiments revealed three distinct phases. The intermediate phase included elastic "ringing" (damped oscillation) which provided new insights and could be fit to a mathematical model. Both the frequency and step-stress response data suggest that the epidermis provides an elastic rigidity and dermis provides viscoelasticity to the whole skin samples. Hence, whole skin exhibited strain hardening while the dermis-only demonstrated stress softening under step-stress conditions. The data obtained from the low-magnitude shear loads and frequencies that approximate the chronic mechanical environment of a percutaneous implant should aid in the design of a device with an improved skin seal.  相似文献   

12.
An information-based technique is described for applications in mechanical property imaging of soft biological media under quasi-static loads. We adapted the Autoprogressive method that was originally developed for civil engineering applications for this purpose. The Autoprogressive method is a computational technique that combines knowledge of object shape and a sparse distribution of force and displacement measurements with finite-element analyses and artificial neural networks to estimate a complete set of stress and strain vectors. Elasticity imaging parameters are then computed from estimated stresses and strains. We introduce the technique using ultrasonic pulse-echo measurements in simple gelatin imaging phantoms having linear-elastic properties so that conventional finite-element modeling can be used to validate results. The Autoprogressive algorithm does not require any assumptions about the material properties and can, in principle, be used to image media with arbitrary properties. We show that by selecting a few well-chosen force–displacement measurements that are appropriately applied during training and establish convergence, we can estimate all nontrivial stress and strain vectors throughout an object and accurately estimate an elastic modulus at high spatial resolution. This new method of modeling the mechanical properties of tissue-like materials introduces a unique method of solving the inverse problem and is the first technique for imaging stress without assuming the underlying constitutive model.  相似文献   

13.
Dopamine has been implicated in the modulation of diverse forms of behavioral plasticity, including appetitive learning and addiction. An important challenge is to understand how dopamine's effects at the cellular level alter the properties of neural circuits to modify behavior. In the nematode C. elegans, dopamine modulates habituation of an escape reflex triggered by body touch. In the absence of food, animals habituate more rapidly than in the presence of food; this contextual information about food availability is provided by dopaminergic mechanosensory neurons that sense the presence of bacteria. We find that dopamine alters habituation kinetics by selectively modulating the touch responses of the anterior-body mechanoreceptors; this modulation involves a D1-like dopamine receptor, a Gq/PLC-beta signaling pathway, and calcium release within the touch neurons. Interestingly, the body touch mechanoreceptors can themselves excite the dopamine neurons, forming a positive feedback loop capable of integrating context and experience to modulate mechanosensory attention.  相似文献   

14.
In order to fully understand the epithelial mechanics it is essential to integrate different levels of epithelial organization. In this work, we propose a theoretical approach for connecting the macroscopic mechanical properties of a monolayered epithelium to the mechanical properties at the cellular level. The analysis is based on the established mechanical models—at the macroscopic scale the epithelium is described within the mechanics of thin layers, while the cellular level is modeled in terms of the cellular surface (cortical) tension and the intercellular adhesion. The macroscopic elastic energy of the epithelium is linked to the energy of an average epithelial cell. The epithelial equilibrium state is determined by energy minimization and the macroscopic elastic moduli are calculated from deformations around the equilibrium. The results indicate that the epithelial equilibrium state is defined by the ratio between the adhesion strength and the cellular surface tension. The lower and the upper bounds for this ratio are estimated. If the ratio is small, the epithelium is cuboidal, if it is large, the epithelium becomes columnar. Importantly, it is found that the cellular cortical tension and the intercellular adhesion alone cannot produce the flattened squamous epithelium. Any difference in the surface tension between the apical and basal cellular sides bends the epithelium towards the side with the larger surface tension. Interestingly, the analysis shows that the epithelial area expansivity modulus and the shear modulus depend only on the cellular surface tension and not on the intercellular adhesion. The results are presented in a general analytical form, and are thus applicable to a variety of monolayered epithelia, without relying on the specifics of numerical finite-element methods. In addition, by using the standard theoretical tools for multi-laminar systems, the results can be applied to epithelia consisting of layers with different mechanical properties.  相似文献   

15.
The mechanics of a fascicle insertion into the skin by a mosquito of the type aedes aegypti has been studied experimentally using high-speed video (HSV) imaging, and analytically using a mathematical model. The fascicle is a polymeric microneedle composed of a ductile material, chitin. It has been proposed that the mosquito applies a non-conservative follower force component in addition to the Euler compressive load in order to prevent buckling and penetrate the skin. In addition, the protective sheath surrounding the fascicle (labium) provides lateral support during insertion. The mechanics model presented approximates the fascicle as a slender column supported on an elastic foundation (labium) subjected to non-conservative (Beck) and conservative Euler loads simultaneously at the end. Results show that the lateral support of the fascicle provided by the labium is essential for successful penetration by increasing the critical buckling load by a factor of 5. The non-conservative follower force application increases the buckling load by an additional 20% and may or may not be necessary for successful penetration. Experimental results showing the importance of the labium have been cited to validate the model predictions, in addition to the video observations presented in this work. This understanding may be useful in designing painless needle insertion systems as opposed to miniaturized hypodermic needles.  相似文献   

16.
We present measurements of the bulk Young's moduli of early chick embryos at Hamburger-Hamilton stage 10. Using a micropipette probe with a force constant k ~0.025 N/m, we applied a known force in the plane of the embryo in the anterior-posterior direction and imaged the resulting tissue displacements. We used a two-dimensional finite-element simulation method to model the embryo as four concentric elliptical elastic regions with dimensions matching the embryo's morphology. By correlating the measured tissue displacements to the displacements calculated from the in-plane force and the model, we obtained the approximate short time linear-elastic Young's moduli: 2.4 ± 0.1 kPa for the midline structures (notocord, neural tube, and somites), 1.3 ± 0.1 kPa for the intermediate nearly acellular region between the somites and area pellucida, 2.1 ± 0.1 kPa for the area pellucida, and 11.9 ± 0.8 kPa for the area opaca.  相似文献   

17.
Tham LM  Lee HP  Lu C 《Journal of biomechanics》2006,39(12):2183-2193
The effectiveness of the cupping technique, a treatment modality in Traditional Chinese Medicine, in stimulating acupuncture points for pain relief was examined in this paper from a biomechanical perspective. Parametric studies including the effects of vacuum pressure, loading rate, friction coefficient at the cup-skin interface, and size and shape of the cup were carried out using a model based on the finite-element method. The anatomical structures of skin, fat, and muscle were modelled. All the soft-tissue layers were assumed to be nonlinearly elastic and viscoelastic. The rim of the cup was also modelled to study the interaction between cup and skin; the cup rim was assumed to be rigid. The simulation results showed that the stresses in the soft tissue were increased for increasing applied vacuum pressures and that the effects of cupping were mostly limited to the region enclosed by the cup. The simulations also indicated that the magnitude of the applied vacuum may have had direct implications for the severity of bruising of the skin following cupping treatment. Most significantly, the simulation results contradicted the established practice of cup size selection according to the depth of the disorder. Experimental verification of the proposed multi-layered finite-element model is presented. The nature of the bruising inherent to the cupping treatment is also explained by the proposed model.  相似文献   

18.

Background  

The function of esophagus is to move food by peristaltic motion which is the result of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the food bolus. The structure of the esophagus is layered. In this paper, the esophagus is treated as a two-layered structure consisting of an inner collagen-rich submucosa layer and an outer muscle layer. We developed a model and experimental setup for determination of elastic moduli in the two layers in circumferential direction and related the measured elastic modulus of the intact esophagus to the elastic modulus computed from the elastic moduli of the two layers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号