首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1.688 g/cm3 satellite DNA of Drosophila melanogaster is composed primarily of 359 base-pair units repeated in tandem. Most of these units contain a single cleavage site for both HaeIII and HinfI restriction endonucleases; however, some units lack one or both sites. Previously we had shown that the distribution of HaeIII and HinfI endonuclease sites varies widely between different regions of 1.688 g/cm3 satellite DNA; for example, some regions contain HaeIII sites in every unit and other regions (>10,000 base-pairs) contain no HaeIII sites (Carlson &; Brutlag, 1977). We have now cloned molecules of 1.688 g/cm3 satellite DNA which lack HaeIII sites and have shown that the absence of sites is caused by sequence variation rather than base modification. This result indicates that regions of 1.688 g/cm3 satellite DNA with different distributions of restriction sites differ in the sequence of their repeating units. We also show that a large fraction of the satellite DNA which is not cleaved by HaeIII endonuclease still contains HinfI endonuclease sites (and AluI sites) spaced about 359 base-pairs apart. However, one cloned segment lacking HaeIII sites was found to contain 33 tandem copies of a novel 254 base-pair unit. Sequence analysis showed that this 254 base-pair unit is homologous to the 359 repeat except for a 98 base-pair deletion. These data suggest that both units have evolved from a common ancestor and that each has subsequently become amplified into separate tandem arrays.  相似文献   

2.
The periodicities of the restriction enzyme cleavage sites in highly repetitive DNAs of six mammalian species (monkey, mouse, sheep, human, calf and rat) appear related to the length of DNA contained in the nucleosome subunit of chromatin. We suggest that the nucleosome structure is an essential element in the generation and evolution of repeated DNA sequences in mammals (Brown et al., 1978; Maio et al., 1977). The possibility of a phase relation between DNA repeat sequences and associated nucleosome proteins is consistent with this hypothesis and has been tested by restriction enzyme and micrococcal nuclease digestions of repetitive DNA sequences in isolated, intact nuclei.Sites for four different restriction enzyme activities, EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit of component α DNA, a highly repetitive DNA fraction of the African green monkey. The periodicity of cleavage sites for each of the enzymes (176 ± 4 nucleotide base-pairs) corresponds closely to the periodicity (about 185 nucleotide base-pairs) of the sites attacked in the initial stages of micrococcal nuclease digestion of nuclear chromatin. In intact monkey nuclei, EcoRI-RI1 sites are accessible to restriction enzyme cleavage; the HindIII and HaeIII sites are not. The results suggest (1) that, in component α chromatin, the EcoRI-RI1 sites are found at the interstices of adjacent nucleosomes and (2) the HindIII and HaeIII sites are protected from cleavage by their location on the protein core of the nucleosome. This interpretation was confirmed by experiments in which DNA segments of mononucleosomes and nucleosome cores released from CV-1 nuclei by micrococcal nuclease were subsequently treated with EcoRI, EcoRI1 and HindIII. A major secondary segment of component α, about 140 nucleotide base-pairs in length, was released only by treatment with HindIII, in keeping with the location of the HindIII sites in the restriction map and their resistance to cleavage in intact nuclei.EcoRI reduces calf satellite I DNA to a segment of about 1408 nucleotide basepairs. In contrast, restriction of calf satellite I DNA with EcoRI1 produces six prominent segments ranging in size from 176 to 1408 nucleotide base-pairs. Treatment of isolated calf nuclei with either EcoRI or EcoRI1 did not produce segments shorter than 1408 base-pairs, indicating that while canonical EcoRI sites are accessible to attack, the irregularly spaced EcoRI1 sites are specifically blocked. The results are consistent with a phase relation between the repeat sequence of calf satellite I DNA and an octameric array of nucleosomes.  相似文献   

3.
We have characterized the organization of the genes coding for 18 S, 5·8 S and 26 S ribosomal RNAs in the nematode Caenorhabditis elegans. These ribosomal genes, present in about 55 copies per haploid genome, alternate in a repeating tandem array. The repeating unit is only 7000 base-pairs, containing a non-transcribed spacer of no more than 1000 base-pairs. Most of the repeating units have identical restriction maps, but one repeat contains a deletion of 2900 base-pairs, which eliminates all or part of the 18 S coding region. We have found no difference in the major ribosomal DNA restriction endonuclease cleavage patterns between two interbreeding strains of C. elegans, but found differences between C. elegans and the closely related Caenorhabditis briggsae.  相似文献   

4.
5.
An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for EcoRI, EcoRI1, HindIII and HaeIII. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary EcoRI1 and HindIII sites, about 59% of the repeat sequences contain secondary EcoRI1 sites and about 36% of the repeat sequences contain secondary HindIII sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial EcoRI1 or HindIII digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit.Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 mm-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion.These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich et al., 1977b). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio et al., 1977).  相似文献   

6.
Restriction site periodicities in highly repetitive DNA of primates.   总被引:2,自引:0,他引:2  
Highly repeated DNA sequences from three Old World primate groups have been compared, using restriction endonucleases. Baboons, macaques and mangabeys share a 3404 base-pair, tandemly repeated DNA that is cut once by EndoR · BamHI. The several species of guenons, including the African green monkey, possess a related 170 base-pair, tandemly organized sequence distinguished by the feature of being cut once by EndoR · HindIII, EndoR · MboII or EndoR · HphI. The tandemly repeated DNA of the colobus monkey is based on a monomer length of 680 base-pairs, being cut once by EndoR · BamI or EndoR · EcoRI. Thus, all three highly repeated DNAs have a monomer length of 170n base-pairs, where n = 1, 2 or 4. The 340 and 680 base-pair repeated DNAs contain an internal 170 base-pair periodicity with respect especially to the EndoR · HindIII cleavage site, but with respect also to several other enzymes that characterize each repeated sequence. The 170 base-pair length is called the fundamental unit.The three repeated DNAs are more conserved in the region around the HindIII site and are more divergent elsewhere in the sequence. All seven 170 base-pair fundamental units were related to one another, judging from the overall similarities of the maps of restriction endonuclease cleavage sites. The highly repeated DNAs from baboons and guenons are related enough to cross-hybridize at relaxed criteria (60 °C in 0.12 m-Na+) but neither hybridizes to repeated colobus DNA under this condition.The results show that highly repeated sequences in primates form a common library descended from a single ancestral sequence, with 170 base-pairs making up the fundamental unit of library members. Occasionally, a member of the library is amplified, creating a newly amplified family. In Old World monkeys the most recent amplification just preceded active speciation.  相似文献   

7.
The satellite II DNAs of the domestic ox Bos taurus and sheep Ovis aries have been sequenced, and that of the domestic goat Capra hircus partially sequenced. All three are related, and consist of repeat units of about 700 base-pairs. There is no evidence of internal repetition within these repeat units. When matched for maximum homology, the goat and sheep sequences show 83% homology, whereas the ox and sheep sequences share only 70% homology. Factors contributing to the uncertainty of the exact homology between these sequences are discussed, but the results are nevertheless consistent with their progenitor sequence being present in the common ancestor of cattle and sheep. Goat satellite II DNA is shown to contain another, unrelated, tandemly repeated sequence, which is composed of 22 base-pair repeat units. Both this sequence and a region of ox satellite II share good homology with the 11 base-pair progenitor sequence of ox 1.706 g/cm3 satellite DNA. It is suggested that this shared sequence could play a role in bovine satellite DNA amplification.  相似文献   

8.
The products of digestion of Drosophila melanogaster satellite IV DNA with restriction endonuclease MboII have been analysed and found to be consistent with a repeating pentamer sequence (A-G-A-A-G)n for satellite IV. More than 95% of the satellite DNA is digested to fragments less than 25 base-pairs in length, suggesting that the DNA sequence is highly conserved.  相似文献   

9.
α-Satellite DNA from African green monkey cells was analysed with restriction nucleases in some detail confirming and complementing our earlier results. With EcoRI and HaeIII (or BsuRI isoschizomer), about 25 and 10%, respectively, of the satellite DNA were cleaved into a series of fragments of the 172 bp repeat length and multiples thereof. To allow studies with fragments of homogeneous sequence unit length, HindIII fragments were covalently joined with the plasmid pBR313. After transformation 19 clones were obtained, containing up to three monomer fragments. Nine of the clones were characterized by digestion with EcoRI. Three of these had cleavage sites for this nuclease in the satellite DNA portion. In the six clones tested with HaeIII no cleavage site was detected in the cloned DNA. The results are discussed in relation to the nucleotide sequence data recently published by Rosenberg et al. (1978) and in the context of random and nonrandom processes in satellite DNA evolution.  相似文献   

10.
Segments of African green monkey DNA containing sequences of the highly reiterated cryptic satellite DNA called α-satellite were selected from a library in λ bacteriophage. This λ library was constructed to enrich for monkey segments that contain (1) irregular regions of α-satellite and (2) α-satellite linked to other monkey sequences. At least 11 of 15 cloned monkey segments between 13 × 103 and 16 × 103 base-pairs in length, selected by hybridization to α-satellite, also include other monkey sequences.In general, α-satellite sequences close to the junctions with non-α-satellite DNA contain an abundance of divergent forms compared to the average frequency of such forms within total α-satellite. Many of the cloned segments are missing some of the HinIII sites that occur once in most monomer units of α-satellite, and likewise several of the cloned segments contain restriction sites that rarely occur in α-satellite as a whole. In some segments HinIII sites occur that are spaced at distances other than the basic multiple of 172 base-pairs. At least one of the cloned segments, however, is composed mainly of typical 172 base-pair long α-satellite monomer units.Several of these cloned DNAs have been mapped by restriction endonuclease digestion and Southern blot analysis and the arrangements of α-satellite and non-α-satellite sequences have been determined. In addition to segments that contain a boundary where satellite meets other types of sequence, some contain two such boundaries and thus satellite flanks a non-α-satellite segment. Further, two different types of non-α-satellite sequence appear to be common to more than one phage, perhaps indicating some recurring organization at boundaries.  相似文献   

11.
1. A highly repeated, satellite DNA family from the North American cyprinid fish, Notropis lutrensis, was identified as a fragment band following restriction endonuclease enzyme digestion and agarose gel electrophoresis of genomic DNA; evidence of a tandem arrangement of the satellite in the genome was demonstrated by the formation of "ladders" in partial restriction endonuclease digests. 2. The satellite family was estimated densitometrically to comprise 7-8% of the N. lutrensis genome; mapping experiments using isolated and purified monomer repeat units of the satellite uncovered nine sites for seven different restriction enzymes. 3. A monomeric repeat unit of the satellite was cloned and sequenced, and found to be 174 base pairs in length and to have a base composition of 47% G + C (guanine + cytosine); computer analysis of the sequence revealed 13 new restriction sites for 12 additional enzymes. 4. Computer analysis also revealed that a large degree of internal redundancy in the monomer unit exists in the form of both direct and inverted repeating units, and that the entire sequence, starting with one base in either orientation, constitutes an open reading frame. In all but the last characteristic, the N. lutrensis satellite DNA is very similar to satellite DNAs in other eukaryotes.  相似文献   

12.
The sequence specificity of micrococcal nuclease complicates its use in experiments addressed to the still controversial issue of nucleosome phasing. In the case of alpha-satellite DNA containing chromatin from African green monkey (AGM) cells cleavage by micrococcal nuclease in the nucleus was reported to occur predominantly at only one location around position 126 of the satellite repeat unit (Musich et al. (1982) Proc. Natl. Acad. Sci. USA 79, 118-122). DNA control experiments conducted in the same study indicated the presence of many preferential cleavage sites for micrococcal nuclease on the 172 bp long alpha-satellite repeat unit. This difference was taken as evidence for a direct and simple phase relationship between the alpha-satellite DNA sequence and the position of the nucleosomes on the DNA. We have quantitatively analyzed the digestion products of the protein-free satellite monomer with micrococcal nuclease and found that 50% of all cuts occur at positions 123 and 132, 5% at position 79, and to a level of 1-3% at about 20 other positions. We also digested high molecular weight alpha-satellite DNA from AGM nuclei with micrococcal nuclease. Again cleavage occurred mostly at positions 123 and 132 of the satellite repeat unit. Thus digestion of free DNA yields results very similar to those reported by Musich et al. for the digestion of chromatin. Therefore no conclusions on a possible phase relationship can be drawn from the chromatin digestion experiments.  相似文献   

13.
Chromosome-specific subfamilies within human alphoid repetitive DNA   总被引:21,自引:0,他引:21  
Nucleotide sequence data of about 20 X 10(3) base-pairs of the human tandemly repeated alphoid DNA are presented. The DNA sequences were determined from 45 clones containing EcoRI fragments of alphoid DNA isolated from total genomic DNA. Thirty of the clones contained a complete 340 base-pair dimer unit of the repeat. The remaining clones contained alphoid DNA with fragment lengths of 311, 296, 232, 170 and 108 base-pairs. The sequences obtained were compared with an average alphoid DNA sequence determined by Wu & Manuelidis (1980). The divergences ranged from 0.6 to 24.6% nucleotide changes for the first monomer and from 0 to 17.8% for the second monomer of the repeat. On the basis of identical nucleotide changes at corresponding positions, the individual repeat units could be shown to belong to one of several distinct subfamilies. The number of nucleotide changes defining a subfamily generally constitutes the majority of nucleotide changes found in a member of that subfamily. From an evaluation of the proportion of the total amount of alphoid DNA, which is represented by the clones studied, it is estimated that the number of subfamilies of this repeat may be equal to or exceed the number of chromosomes. The expected presence of only one or a few distinct subfamilies on individual chromosomes is supported by the study, also presented, of the nucleotide sequence of 17 cloned fragments of alphoid repetitive DNA from chromosome 7. These chromosome-specific repeats all contain the characteristic pattern of 36 common nucleotide changes that defines one of the subfamilies described. A unique restriction endonuclease (NlaIII) cleavage site present in this subfamily may be useful as a genetic marker of this chromosome. A family member of the interspersed Alu repetitive DNA was also isolated and sequenced. This Alu repeat has been inserted into the human alphoid repetitive DNA, in the same way as the insertion of an Alu repeat into the African green monkey alphoid DNA.  相似文献   

14.
15.
To understand evolutionary events in the formation of higher-order repeat units in alpha satellite DNA, we have examined gorilla sequences homologous to human X chromosome alpha satellite. In humans, alpha satellite on the X chromosome is organized as a tandemly repeated, 2.0 x 10(3) base-pairs (bp) higher-order repeat unit, operationally defined by the restriction enzyme BamHI. Each higher-order repeat unit is composed of 12 tandem approximately 171 base-pair monomer units that have been classified into five distinct sequence homology groups. BamHI-digested gorilla genomic DNA hybridized with the cloned human 2 x 10(3) bp X alpha satellite repeat reveals three bands of sizes approximately 3.2 x 10(3), 2.7 x 10(3) and 2 x 10(3) bp. Multiple copies of all three repeat lengths have been isolated and mapped to the centromeric region of the gorilla X chromosome by fluorescence in situ hybridization. Long-range restriction mapping using pulsed-field gel electrophoresis shows that the 2.7 x 10(3) and 3.2 x 10(3) bp repeat arrays exist as separate but likely neighboring arrays on the gorilla X, each ranging in size from approximately 200 x 10(3) to 500 x 10(3) bp, considerably smaller than the approximately 2000 x 10(3) to 4000 x 10(3) bp array found on human X chromosomes. Nucleotide sequence analysis has revealed that monomers within all three gorilla repeat units can be classified into the same five sequence homology groups as monomers located within the higher-order repeat unit on the human X chromosome, suggesting that the formation of the five distinct monomer types predates the divergence of the lineages of contemporary humans and gorillas. The order of 12 monomers within the 2 x 10(3) and 2.7 x 10(3) bp repeat units from the gorilla X chromosome is identical with that of the 2 x 10(3) bp repeat unit from the human X chromosome, suggesting an ancestral linear arrangement and supporting hypotheses about events largely restricted to single chromosome types in the formation of alpha satellite higher-order repeat units.  相似文献   

16.
Nucleotide sequence of a highly repetitive component of rat DNA.   总被引:20,自引:13,他引:7       下载免费PDF全文
A highly repetitive component of rat DNA which could not yet be enriched by density gradient centrifugation was isolated with the help of the restriction nuclease Sau3AI. This nuclease converted the bulk of the DNA to small fragments and left a repetitive DNA component as large fragments which were subsequently purified by gel filtration and electrophoresis. This DNA component which was termed rat satellite DNA I is composed of tandemly repeated 370 bp blocks. According to sequence analysis the 370 bp repeats consist of alternating 92 and 93 bp units with homologous but not identical sequences. Methylation of CpG residues was correlated to the rate of cleavage by restriction nucleases. Significant homologies exist between the sequences of rat satellite DNA I and satellite DNAs of several other organisms. The divergence of the sequence of rat satellite DNA I was discussed with respect to evolutionary considerations.  相似文献   

17.
Component alpha DNA is a highly repetitive sequence that comprises nearly a quarter of the African green monkey (Cercopithecus aethiops) genome. A previous microbial restriction enzyme analysis showed that the repeat structure of component alpha DNA is based upon a monomeric unit of 176 +/- 4 base-pairs. An endonuclease, provisionally termed Case I, has been isolated from African green monkey testes that cleaves component alpha DNA into multimeric segments based upon the same repeat periodicity as that revealed by microbial restriction enzymes. The primary sites of Cae I cleavage in the component alpha sequence appear to be 120 +/- 6 base-pairs distant from the Hind III sites and 73 +/- 6 base-pairs distant from the Eco RI* sites. Cae I has been partially characterized with special reference to the effects of ATP and S-adenosylmethionine on the cleavage of component alpha DNA. Cae I may be a member of a class of similar site-specific nucleases present in mammalian cells. Cae I also cleaves mouse satellite DNA into a multimeric series of discrete segments: the periodicity of this series is shorter than that revealed by Eco RII retriction analysis of mouse satellite DNA.  相似文献   

18.
《Gene》1996,169(2):157-164
A highly repetitive sequence in the genomic DNA of the bivalve mollusc Donax trunculus (Dt) has been identified upon restriction with EcoRV. During the time-course of DNA digestion, genomic fragments resolved electrophoretically into a ladder-like banding pattern revealing a tandem arrangement of the repeated elements, thus representing satellite DNA sequences. Cloning and sequence analysis unraveled the presence of two groups of monomer units which can be considered distinctive satellite subfamilies. Each subclass is distinguishable by the presence of 17 evenly spread diagnostic nucleotides (nt). The respective consensus sequences are 155 bp in length and differ by 11%, while relevant internal substructures were not observed. The two satellite subfamilies constitute 0.23 and 0.09% of the Dt genome, corresponding to 20 000 and 7600 copies per haploid complement, respectively. Sequence mutations often appear to be shared between two or more monomer variants, indicating a high degree of homogenization as opposed to that of random mutational events. Shared mutations among variants appear either as single changes or in long stretches. This pattern may arise from gene conversion mechanisms acting at different levels, such as the spread of nt sequences of a similar length to the monomer repeat itself, and the diffusion of short tracts a few bp long. Subfamilies might have evolved from the occasional amplification and spreading of a monomer variant effected by gene conversion events  相似文献   

19.
20.
We have analysed by micrococcus nuclease digestion the chromatin structure of genes in the Balbiani ring (BR) regions of a Chironomus cell line. Gel electrophoresis of the DNA fragments reveals a repeating structure which consists of two repeat sizes, a long repeat seen in the large fragments and a small repeat seen in the small fragments. The two repeats hardly overlap, except in a narrow transition zone which is at a different fragment size in the BR 2.2 and the BR 2.1 gene. The sizes of the large repeats fit the repeat of the underlying DNA sequence. The short repeats are between 170 and 180 bp, and after H1 depletion the short repeat in the BR 2.2 gene is 160 bp. Our most favoured interpretation of these data is that in intact chromatin the nucleosomes in the BR genes are phased with respect to the repeating DNA sequence, whereas micrococcus nuclease digestion leads to loss of a nucleosome-positioning constraint and hence to rearrangement of the nucleosomes. Our results imply a possible artefact of nuclease digestion of chromatin, which has to be taken into account in mapping nucleosome positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号