首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
1. The modification of pyruvate kinase activity in vitro was examined by altering the environmental [Mg(2+)]/[Ca(2+)] ratio with EDTA on the one hand and isolated rat liver mitochondria on the other. 2. Controlled additions of Ca(2+) and EDTA caused pyruvate kinase activity to be alternately and rapidly switched on and off. 3. By being able to accumulate Ca(2+) in preference to Mg(2+) rat liver mitochondria were able to alter the [Mg(2+)]/[Ca(2+)] ratio in the vicinity of pyruvate kinase and thereby modify the activity of this enzyme. 4. The possible role of mitochondria in modifying pyruvate kinase and other ion-sensitive cytoplasmic enzyme activities is discussed.  相似文献   

2.
We have previously shown that acetylcholine-induced contraction of oesophageal circular muscle depends on activation of phosphatidylcholine selective phospholipase C and D, which result in formation of diacylglycerol, and of phospholipase 2 which produces arachidonic acid. Diacylglycerol and arachidonic acid interact synergistically to activate protein kinase C. We have therefore investigated the relationship between cytosolic Ca(2+) and activation of phospholipase A(2) in response to acetylcholine-induced stimulation, by measuring the intracellular free Ca(2+) ([Ca(2+)]i), muscle tension, and [3H] arachidonic acid release. Acetylcholine-induced contraction was associated with increased [Ca(2+)]i and arachidonic acid release in a dose-dependent manner. In Ca(2+)-free medium, acetylcholine did not produce contraction, [Ca(2+)]i increase, and arachidonic acid release. In contrast, after depletion of Ca(2+) stores by thapsigargin (3 microM), acetylcholine caused a normal contraction, [Ca(2+)]i increase and arachidonic acid release. The increase in [Ca(2+)]i and arachidonic acid release were attenuated by the M2 receptor antagonist methoctramine, but not by the M3 receptor antagonist p-fluoro-hexahydro siladifenidol. Increase in [Ca(2+)]i and arachidonic acid release by acetylcholine were inhibited by pertussis toxin and C3 toxin. These findings indicate that contraction and arachidonic acid release are mediated through muscarinic M2 coupled to Gi or rho protein activation and Ca(2+) influx. Acetylcholine-induced contraction and the associated increase in [Ca(2+)]i and release of arachidonic acid were completely reduced by the combination treatment with a phospholipase A(2) inhibitor dimethyleicosadienoic acid and a phospholipase D inhibitor pCMB. They increased by the action of the inhibitor of diacylglycerol kinase R59949, whereas they decreased by a protein kinase C inhibitor chelerythrine. These data suggest that in oesophageal circular muscle acetylcholine-induced [Ca(2+)]i increase and arachidonic acid release are mediated through activation of M2 receptor coupled to Gi or rho protein, resulting in the activation of phospholipase A(2) and phospholipase D to activate protein kinase C.  相似文献   

3.
We have constructed a three-dimensional reaction-diffusion model of the mammalian cardiac calcium release unit. We analyzed effects of diffusion coefficients, single channel current amplitude, density of RyR channels, and reaction kinetics of ATP(2-) with Ca(2+) and Mg(2+) ions on spatiotemporal concentration profiles of Ca(2+), Mg(2+), and ATP(2-) in the dyadic cleft during Ca(2+) release. The model revealed that Ca(2+) concentration gradients persist near RyRs in the steady state. Even with low number of open RyRs, peak [Ca(2+)] in the dyadic space reached values similar to estimates of luminal [Ca(2+)] in approximately 1 ms, suggesting that during calcium release the Ca(2+) gradient moves from the cisternal membrane towards the boundary of the dyadic space with the cytosol. The released Ca(2+) bound to ATP(2-), and thus substantially decreased ATP(2-) concentration in the dyadic space. The released Ca(2+) could also replace Mg(2+) in its complex with ATP(2-) during first milliseconds of release if dissociation of MgATP was fast. The results suggest that concentration changes of Ca(2+), Mg(2+), and ATP(2-) might be large and fast enough to reduce dyadic RyR activity. Thus, under physiological conditions, termination of calcium release may be facilitated by the synergic effect of the construction and chemistry of mammalian cardiac dyads.  相似文献   

4.
The effect of temperature, pH, and free [Mg(2+)] on the apparent equilibrium constant of pyruvate kinase (phosphoenol transphosphorylase) (EC ) was investigated. The apparent equilibrium constant, K', for the biochemical reaction P-enolpyruvate + ADP = ATP + Pyr was defined as K' = [ATP][Pyr]/[ADP][P-enolpyruvate], where each reactant represents the sum of all the ionic and metal complexed species in M. The K' at pH 7.0, 1.0 mm free Mg(2+) and I of 0.25 m was 3.89 x 10(4) (n = 8) at 25 degrees C. The standard apparent enthalpy (DeltaH' degrees ) for the biochemical reaction was -4.31 kJmol(-1) in the direction of ATP formation. The corresponding standard apparent entropy (DeltaS' degrees ) was +73.4 J K(-1) mol(-1). The DeltaH degrees and DeltaS degrees values for the reference reaction, P-enolpyruvate(3-) + ADP(3-) + H(+) = ATP(4-) + Pyr(1-), were -6.43 kJmol(-1) and +180 J K(-1) mol(-1), respectively (5 to 38 degrees C). We examined further the mass action ratio in rat heart and skeletal muscle at rest and found that the pyruvate kinase reaction in vivo was close to equilibrium i.e. within a factor of about 3 to 6 of K' in the direction of ATP at the same pH, free [Mg(2+)], and T. We conclude that the pyruvate kinase reaction may be reversed under some conditions in vivo, a finding that challenges the long held dogma that the reaction is displaced far from equilibrium.  相似文献   

5.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

6.
7.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

8.
Fast Ca(2+) release kinetics were measured in cardiac sarcoplasmic reticulum vesicles actively loaded with Ca(2+). Release was induced in solutions containing 1.2 mM free ATP and variable free [Ca(2+)] and [Mg(2+)]. Release rate constants (k) were 10-fold higher at pCa 6 than at pCa 5 whereas Ryanodine binding was highest at pCa < or =5. These results suggest that channels respond differently when exposed to sudden [Ca(2+)] changes than when exposed to Ca(2+) for longer periods. Vesicles with severalfold different luminal calcium contents exhibited double exponential release kinetics at pCa 6, suggesting that channels undergo time-dependent activity changes. Addition of Mg(2+) produced a marked inhibition of release kinetics at pCa 6 (K(0.5) = 63 microM) but not at pCa 5. Coexistence of calcium activation and inhibition sites with equally fast binding kinetics is proposed to explain this behavior. Thimerosal activated release kinetics at pCa 5 at all [Mg(2+)] tested and increased at pCa 6 the K(0.5) for Mg(2+) inhibition, from 63 microM to 136 microM. We discuss the possible relevance of these results, which suggest release through RyR2 channels is subject to fast regulation by Ca(2+) and Mg(2+) followed by time-dependent regulation, to the physiological mechanisms of cardiac channel opening and closing.  相似文献   

9.
Effects of the imidazoline compound RX871024 on cytosolic free Ca(2+) concentration ([Ca(2+)]i) and insulin secretion in pancreatic beta-cells from SUR1 deficient mice have been studied. In beta-cells from wild-type mice RX871024 increased [Ca(2+)]i by blocking ATP-dependent K(+)-current (K(ATP)) and inducing membrane depolarization. In beta-cells lacking a component of the K(ATP)-channel, SUR1 subunit, RX871024 failed to increase [Ca(2+)]i. However, insulin secretion in these cells was strongly stimulated by the imidazoline. Thus, a major component of the insulinotropic activity of RX871024 is stimulation of insulin exocytosis independently from changes in K(ATP)-current and [Ca(2+)]i. This means that effects of RX871024 on insulin exocytosis are partly mediated by interaction with proteins distinct from those composing the K(ATP)-channel.  相似文献   

10.
The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-activation voltage (V(0.5)) is steeply dependent on [Ca(2+)] in the micromolar range, but shows a tendency towards saturation over the range of 60-300 microM Ca(2+). As [Ca(2+)] is increased to millimolar levels, the V(0.5) is strongly shifted again to more negative potentials. When channels are activated by 300 microM Ca(2+), further addition of either mM Ca(2+) or mM Mg(2+) produces similar negative shifts in steady-state activation. Millimolar Mg(2+) also produces shifts of similar magnitude in the complete absence of Ca(2+). The ability of millimolar concentrations of divalent cations to shift activation is primarily correlated with a slowing of BK current deactivation. At voltages where millimolar elevations in [Ca(2+)] increase activation rates, addition of 10 mM Mg(2+) to 0 Ca(2+) produces little effect on activation time course, while markedly slowing deactivation. This suggests that Mg(2+) does not participate in Ca(2+)-dependent steps that influence current activation rate. We conclude that millimolar Mg(2+) and Ca(2+) concentrations interact with low affinity, relatively nonselective divalent cation binding sites that are distinct from higher affinity, Ca(2+)-selective binding sites that increase current activation rates. A symmetrical model with four independent higher affinity Ca(2+) binding steps, four voltage sensors, and four independent lower affinity Ca(2+)/Mg(2+) binding steps describes well the behavior of G-V curves over a range of Ca(2+) and Mg(2+). The ability of a broad range of [Ca(2+)] to produce shifts in activation of Slo1 conductance can, therefore, be accounted for by multiple types of divalent cation binding sites.  相似文献   

11.
We have studied the effect of the ciguatera-related toxin maitotoxin (MTX) on the cytosolic free calcium concentration ([Ca(2+)]i) of human peripheral blood lymphocytes loaded with the fluorescent probe Fura2 and the regulation of MTX action by different drugs known to interfere in cellular Ca(2+) signalling mechanisms and by the marine phycotoxin yessotoxin (YTX). MTX produced a concentration-dependent elevation of [Ca(2+)]i in a Ca(2+)-containing medium. This effect was stimulated by pretreatment with YTX 1 microM and NiCl(2) 15 microM. The voltage-independent Ca(2+) channel antagonist 1-[beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenyl]-1H-imidazole hydrochloride (SKF96365) blocked the MTX-induced [Ca(2+)]i elevation, while the L-type channel blocker nifedipine had no effect. Pretreatment with NiCl(2) or nifedipine did not modify YTX-induced potentiation of MTX effect, and SKF96365-induced inhibition was reduced in the presence of YTX, which suggest different pathways to act on [Ca(2+)]i. Preincubation with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide.2HCl (H-89) or genistein (10 microM) also had no effect on the MTX-induced [Ca(2+)]i increment. In contrast, the PKC inhibitor bisindolilmaleimide I (GF109203X 1 microM) potentiated the MTX effect, whereas phosphatidylinositol (PI) 3-kinase inhibition with wortmannin (10 nM) reduced the MTX-elicited Ca(2+) entry. In summary, MTX produced Ca(2+) influx into human lymphocytes through a SKF96365-sensitive, nifedipine-insensitive pathway. The MTX-induced [Ca(2+)]i elevation was stimulated by the marine toxin YTX through a mechanism insensitive to SKF96365, nifedipine or NiCl(2). It was also stimulated by the divalent cation Ni(2+) and PKC inhibition and was partially inhibited by PI 3-kinase inhibition.  相似文献   

12.
During increases in cardiac work there are net increases in cytosolic [Ca(2+)] and ATP hydrolysis by myofiliments and ion transport ATPases. However, it is still unclear what role Ca(2+)or the ATP hydrolysis products, ADP and Pi, have on the regulation of mitochondrial ATP production. In this study, work jumps were simulated by simultaneous additions of Ca(2+) and ATPase to porcine heart mitochondria. The net effects on the mitochondrial ATP production were monitored by simultaneously monitoring respiration (mVo2), [NADH], [ADP] and membrane potential (deltapsi) at 37 degrees C. Addition of exogenous ATPase (300 mlU.ml(-1))]ATP (3.4 mM) was used to generate a 'resting' background production of ADP. This resting metabolic rate was 200% higher than the quiescent rate while [NADH] and deltapsi were reduced. Subsequent ATPase additions (1.3IU.ml(-)) were made with varying amounts of Ca(2+)(0 to 535 nM) to simulate step increases in cardiac work. Ca(2+) additions increased mVo2 and depolarized deltapsi, and were consistent with an activation of Fo/F1)ATPase. In contrast, Ca(2+) reduced the [NADH] response to the ATPase addition, consistent with Ca(2+)-sensitive dehydrogenase activity (CaDH). The calculated free ADP response to ATPase decreased \2-fold in the presence of Ca(2+). The addition of 172nM free Ca(2+)] ATPase increased mVo2 by 300% (P<0.05, n=8) while deltapsi decreased by 14.9+/-0.1 mV without changes in [NADH] (P > or =0.05, n=8), consistent with working heart preparations. The addition of Ca(2+) and ATPase combined increased the mitochondrial ATP production rate with changes in deltapsi, NADH and [ADP], consistent with an activation of CaDH and F o /F(1)ATPase activity. These balancing effects of ATPase activity and [Ca(2+)] may explain several aspects of metabolic regulation in the heart during work transitions in vivo.  相似文献   

13.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in C6 glioma cells has been investigated. NDGA (5-100 microM) increased [Ca(2+)]i concentration-dependently. The [Ca(2+)]i increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced NDGA-induced [Ca(2+)]i signals by 52+/-2%. After incubation of cells with NDGA in Ca(2+)-free medium for 4 min, addition of 3 mM CaCl2 induced a concentration-dependent increase in [Ca(2+)]i. NDGA (100 microM)-induced [Ca(2+)]i increases in Ca(2+)-containing medium was not changed by pretreatment with 10 microM nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished 100 microM NDGA-induced [Ca(2+)]i increases. Inhibition of phospholipase C with 2 microM U73122 had little effect on 100 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)]i. Collectively, the results suggest that NDGA increased [Ca(2+)]i in glioma cells in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum in a manner independent of phospholipase C activity and by causing Ca(2+) influx.  相似文献   

14.
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.  相似文献   

15.
The fluorescent Mg(2+) indicator furaptra (mag-fura-2) was introduced into single ventricular myocytes by incubation with its acetoxy-methyl ester form. The ratio of furaptra's fluorescence intensity at 382 and 350 nm was used to estimate the apparent cytoplasmic [Mg(2+)] ([Mg(2+)](i)). In Ca(2+)-free extracellular conditions (0.1 mM EGTA) at 25 degrees C, [Mg(2+)](i) averaged 0.842 +/- 0.019 mM. After the cells were loaded with Mg(2+) by exposure to high extracellular [Mg(2+)] ([Mg(2+)](o)), reduction of [Mg(2+)](o) to 1 mM (in the presence of extracellular Na(+)) induced a decrease in [Mg(2+)](i). The rate of decrease in [Mg(2+)](i) was higher at higher [Mg(2+)](i), whereas raising [Mg(2+)](o) slowed the decrease in [Mg(2+)](i) with 50% reduction of the rate at approximately 10 mM [Mg(2+)](o). Because a part of the furaptra molecules were likely trapped inside intracellular organelles, we assessed possible contribution of the indicator fluorescence emitted from the organelles. When the cell membranes of furaptra-loaded myocytes were permeabilized with saponin (25 microg/ml for 5 min), furaptra fluorescence intensity at 350-nm excitation decreased to 22%; thus approximately 78% of furaptra fluorescence appeared to represent cytoplasmic [Mg(2+)] ([Mg(2+)](c)), whereas the residual 22% likely represented [Mg(2+)] in organelles (primarily mitochondria as revealed by fluorescence imaging). [Mg(2+)] calibrated from the residual furaptra fluorescence ([Mg(2+)](r)) was 0.6-0.7 mM in bathing solution [Mg(2+)] (i.e., [Mg(2+)](c) of the skinned myocytes) of either 0.8 mM or 4.0 mM, suggesting that [Mg(2+)](r) was lower than and virtually insensitive to [Mg(2+)](c). We therefore corrected furaptra fluorescence signals measured in intact myocytes for this insensitive fraction of fluorescence to estimate [Mg(2+)](c). In addition, by utilizing concentration and dissociation constant values of known cytoplasmic Mg(2+) buffers, we calculated changes in total Mg concentration to obtain quantitative information on Mg(2+) flux across the cell membrane. The calculations indicate that, in the presence of extracellular Na(+), Mg(2+) efflux is markedly activated by [Mg(2+)](c) above the normal basal level (approximately 0.9 mM), with a half-maximal activation of approximately 1.9 mM [Mg(2+)](c). We conclude that [Mg(2+)](c) is tightly regulated by an Mg(2+) efflux that is dependent on extracellular [Na(+)].  相似文献   

16.
Previous data from this laboratory demonstrate that increased intracellular Ca(2+) ([Ca(2+)]i) coordinately regulates human and murine adipocyte lipid metabolism by stimulating lipogenesis and inhibiting lipolysis. However, recent data demonstrate metabolic uncoupling increases [Ca(2+)]i but inhibits lipogenesis by suppressing fatty acid synthase (FAS) activity. Accordingly, we have evaluated the interaction between mitochondrial uncoupling, adipocyte [Ca(2+)]i, and adipocyte lipid metabolism. Pretreatment of 3T3-L1 cells with mitochondrial uncouplers (DNP or FCCP) amplified the [Ca(2+)]i response to depolarization with KCl by 2-4 fold (p <0.001), while this increase was prevented by [Ca(2+)]i channel antagonism with lanthanum. Mitochondrial uncouplers caused rapid (within 4hr) dose-dependent inhibition of FAS activity (p <0.001), while lanthanum caused a further additive inhibition. The suppression of FAS activity induced by uncoupling was reversed by addition of ATP. Mitochondrial uncouplers increased FAS expression significantly while [Ca(2+)]i antagonism with lanthanum decreased FAS expression (P <0.001). In contrast, mitochondrial uncouplers independently inhibited basal and isoproterenol-stimulated lipolysis (20-40%, p <0.001), while this inhibition was fully reversed by lanthanum. Thus, mitochondrial uncoupling exerted short-term regulatory effects on adipocyte [Ca(2+)]i and lipogenic and lipolytic systems, serving to suppress lipolysis via a Ca(2+) -dependent mechanism and FAS activity via a Ca(2+)-independent mechanism.  相似文献   

17.
Frank K  Tilgmann C  Shannon TR  Bers DM  Kranias EG 《Biochemistry》2000,39(46):14176-14182
Phospholamban is an inhibitor of the sarcoplasmic reticulum Ca(2+) transport apparent affinity for Ca(2+) in cardiac muscle. This inhibitory effect of phospholamban can be relieved through its phosphorylation or ablation. To better characterize the regulatory mechanism of phospholamban, we examined the initial rates of Ca(2+)-uptake and Ca(2+)-ATPase activity under identical conditions, using sarcoplasmic reticulum-enriched preparations from phospholamban-deficient and wild-type hearts. The apparent coupling ratio, calculated by dividing the initial rates of Ca(2+) transport by ATP hydrolysis, appeared to increase with increasing [Ca(2+)] in wild-type hearts. However, in the phospholamban-deficient hearts, this ratio was constant, and it was similar to the value obtained at high [Ca(2+)] in wild-type hearts. Phosphorylation of phospholamban by the catalytic subunit of protein kinase A in wild-type sarcoplasmic reticulum also resulted in a constant value of the apparent ratio of Ca(2+) transported per ATP hydrolyzed, which was similar to that present in phospholamban-deficient hearts. Thus, the inhibitory effects of dephosphorylated phospholamban involve decreases in the apparent affinity of sarcoplasmic reticulum Ca(2+) transport for Ca(2+) and the efficiency of this transport system at low [Ca(2+)], both leading to prolonged relaxation in myocytes.  相似文献   

18.
Effects of changing cytosolic free Mg(2+) concentration on L-type Ca(2+) (I(Ca)) and Ba(2+) currents (I(Ba)) were investigated in rat ventricular myocytes voltage-clamped with pipettes containing 0.2 or 1.8mM [Mg(2+)] ([Mg(2+)](p)) buffered with 30mM citrate and 10mM ATP. Increasing [Mg(2+)](p) from 0.2 to 1.8mM reduced current amplitude and accelerated its decay under a variety of experimental conditions. To investigate the mechanism for these effects, steady-state and instantaneous current-voltage relationships were studied with two-pulse and tail current (I(T)) protocols, respectively. Increasing [Mg(2+)](p) shifted the V(M) for half inactivation by -20mV but dramatically decreased I(Ca) amplitude at all potentials tested, consistent with a change in gating kinetics that decreases channel availability. This conclusion was supported by analysis of I(T) amplitude, but these latter experiments also suggested that, in the millimolar concentration range, [Mg(2+)](p) might also inhibit permeation through open Ca(2+) channels at positive V(M).  相似文献   

19.
The effect of arachidonic acid (AA) on intracellular Ca(2+) concentration ([Ca(2+)]i) in human osteoblasts MG63 was studied. AA caused a concentration-dependent increase in [Ca(2+)]i, mainly due to inward Ca(2+) transport from extracellular environment. Moreover, AA in Ca(2+) -free medium produced a small, transient increase of [Ca(2+)]i, indicating that AA may also trigger Ca(2+) release from intracellular stores. Because the [Ca(2+)]i response to AA was inhibited by the cyclooxygenase (COX) inhibitor indomethacin, we tested the effect of prostaglandins (PGs), products of COX pathway. PGs E1 and E2 caused an increase in [Ca(2+)]i, which, however, was far lower than that obtained with AA. The [Ca(2+)]i response to AA was not inhibited by nifedipine, suggesting that AA did not activate a voltage-dependent Ca(2+) channel. Our results indicate that AA could modulate [Ca(2+)]i in MG63 human osteoblasts, where it may influence Ca(2+) transport across both plasma and endoplasmic membranes. Furthermore, they suggest that osteoblast activity may be modulated by AA.  相似文献   

20.
Free Mg(2+) in chloroplasts may contribute to the regulation of photosynthetic enzymes, but adequate methodology for the determination of free Mg(2+) concentration ([Mg(2+)]) in chloroplasts has been lacking. We measured internal chloroplast [Mg(2+)] by using a Mg-sensitive fluorescent indicator, mag-fura-2. In intact, dark-kept spinach chloroplasts, internal [Mg(2+)] was estimated to be 0.50 mM, and illumination caused an increase in [Mg(2+)] to 2.0mM in the stroma. The light-induced increase in [Mg(2+)] was inhibited by a blocker of driven electron transport and uncouplers. The K(+)-specific ionophore valinomycin inhibited the [Mg(2+)] increase in the absence of external K(+), and addition of KCl restored the [Mg(2+)] increase. NH(4)Cl, which induces stromal alkalinization, enhanced the [Mg(2+)] increase. A Ca(2+)-channel blocker, ruthenium red, inhibited the [Mg(2+)] increase, but LaCl(3) had no effect. These results indicate that stromal alkalinization is essential for light-induced increase in [Mg(2+)]. This system for measuring internal chloroplast [Mg(2+)] might provide a suitable system for assay of Mg(2+) transport activity of chloroplast membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号