首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang C  Chen Y  Ku L  Wang T  Sun Z  Cheng F  Wu L 《PloS one》2010,5(11):e14068

Background

An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments.

Methodology/Principal Findings

Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method.

Conclusions/Significance

Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway.  相似文献   

2.
Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a ‘Louise’ by ‘Penawawa’ mapping population was grown in two crop years at two locations in the Pacific Northwest region of the United States and data were collected on 17 end-use quality traits using established quality analysis protocols. Using an established genetic linkage map, composite interval mapping was used to identify QTL associated with 16 of the 17 quality traits. QTL were found on 13 of the 21 wheat chromosomes. A large number of QTL were located on chromosomes 3B and 4D and coincided with traits for milling quality and starch functionality. Chromosome 3B contained 10 QTL, which were localized to a 26.2 cM region. Chromosome 4D contained 7 QTL, all of which were located on an 18.8 cM region of this chromosome. The majority of the alleles for superior end-use quality were associated with the cultivar Louise. The identified QTL detected remained highly significant independent of grain yield and protein quantity. The identification of these QTL for end-use quality gives key insight into the relationship and complexity of end-use quality traits. It also improves our understanding of these relationships, thereby allowing plant breeders to make valuable gains from selection for these important traits.  相似文献   

3.
以玉米光敏感自交系CML288和不敏感自交系黄早4为实验材料,采用长日照15 h、短日照9 h的不同光周期处理,利用激光扫描共聚焦显微镜(laser scanning confocal microscope, LCSM)观察了不同叶龄期玉米茎尖分生组织的形态学变化.结果表明,短日照能促进玉米开花,促进茎端分生组织向生殖生长转化,黄早4和CML288分别在6叶期和7叶期完成茎尖分生组织的生殖转化;而长日照则明显延迟开花,延迟茎尖分生组织向生殖生长转化,黄早4和CML288分别在8叶期和11叶期完成茎尖分生组织的生殖转化;因此光周期诱导玉米开花因光照条件和品种有一定差异,短日照条件下,光敏感和不敏感的玉米自交系开花提前,花期更接近,而长日照条件下光敏感玉米自交系开花延迟要比不敏感自交系明显得多.  相似文献   

4.
玉米雄穗颜色QTL分析   总被引:2,自引:0,他引:2  
雄穗是玉米的重要生殖器官,不同品种间玉米的雄穗外观差异明显。对玉米雄穗的颜色进行遗传分析和QTL定位,筛选与雄穗颜色紧密连锁的分子标记,可以作为玉米的品种保护和品种鉴别的有用工具。同时,紫色雄穗中花色苷类色素含量较高,与玉米雄穗的抗虫性密切相关。本研究利用一个黑玉米自交系SDM为共同父本,分别与白玉米自交系木6和黄玉米自交系Mo17杂交,构建2个相关F2∶3群体,分别命名为MuS(木6×SDM)和MoS(Mo17×SDM),在云南和重庆两个不同的环境中种植,对玉米花药颜色(COAn)和花药护颖颜色(COCa)2个性状进行QTL定位。结果表明:玉米花药和花药护颖的颜色均为数量性状,受主效基因和微效基因共同控制。2个群体在2个环境中共检测到7个与花药颜色相关的QTL,位于第2、3、6和10染色体上,其中位于第10染色体标记区间umc1196a-IDP8526内的QTL在重庆和云南同时表达,对表型的贡献率分别为23.17%和19.98%;2个群体在2个环境中共检测到9个与花药护颖颜色相关的QTL,位于第3、6、9和10染色体上,其中3个QTL为环境钝感QTL(在2个环境中均表达,且至少在1个环境中贡献率大于10%),分别位于第6染色体标记区间umc1979-umc1796、mmc0523-umc2006内和第10染色体标记区间umc1196a-umc2043内,对表型的贡献率为10.69%~59.30%。2个群体检测到的主效QTL的位置和效应高度一致,且控制花药颜色和花药护颖颜色2个性状的主效QTL有连锁分布的现象,主要表现在bins 6.04处的标记mmc0523和bins 10.04处的标记IDP8526附近。位于第6和第10染色体上的在不同环境和遗传背景下稳定的QTL可以作为进一步精细定位的靶位点,也可以为玉米雄穗颜色的分子标记辅助选择提供有价值的参考。  相似文献   

5.
Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16h, 18°C/8h) and optimum temperature (28°C/24h) between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM) were umc1303 (265.1 cM) on chromosome 4, umc1 (246.4 cM) on chromosome 5, umc62 (459.1 cM) on chromosome 6, bnl14.28a (477.4 cM) on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org). Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize.  相似文献   

6.
路明  周芳  谢传晓  李明顺  徐云碧  张世煌 《遗传》2007,29(9):1131-1138
为了增加单位面积产量, 玉米育种者已经开始了更密植更紧凑株型的选育。叶夹角和叶向值是评价玉米株型的重要指标。本研究以掖478×丹340的500个F2单株为作图群体, 构建了具有138个位点的SSR标记连锁图谱, 图谱总长度为1 394.9 cM, 平均间距10.1 cM。利用397个F2:3家系对叶夹角和叶向值进行QTL定位分析, 结果表明: 叶夹角和叶向值分别检测到6和8个QTL, 累计解释表型变异41.0%和60.8%, 单个QTL的贡献率在2.9%~13.6%之间。与叶夹角和叶向值有关的基因主要作用方式为加性和部分显性。此外两个性状共检测到9对上位性互作位点, 表明上位性互作在叶夹角和叶向值的遗传中也起较重要的作用。  相似文献   

7.
Compared to maize and temperate grasses, sorghum has received less attention in terms of improving cell wall components. The objectives of this study were to identify quantitative trait loci (QTL) with main effects, epistatic and pleiotropic effects along with QTL × environment (QE) interactions controlling fibre-related traits in sorghum. Neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, fresh leaf mass, stripped stalk mass, dry stalk mass, fresh biomass and dry biomass were analysed from a population of 188 grain × sweet sorghum recombinant inbred lines. A genetic map consisting of 157 DNA markers was constructed, and QTL were detected using composite interval mapping (CIM). CIM detected more than 5 additive QTL per trait explaining 7.1–24.7% of the phenotypic variation. Abundant co-localization of these QTL was observed across all chromosomes, and the highest cluster was identified on chromosome 6. Searching for candidate genes using the confidence interval of our QTL clusters reveals that these clusters might comprise a set of genes that are tightly linked. Some QTL showed multiple effects; however, the allele for each trait was favouring the parent with the increasing effect. QE interactions were observed for QTL showing multiple effects. Additive × additive interaction was observed for 7 out of 10 traits, indicating the importance of epistatic analysis. However, the phenotypic variation explained by digenic interactions was lower compared to the individual QTL. Our results indicate that various genetic components contribute to fibre-related traits and should be considered during the enhancement of sorghum for lignocellulosic biomass.  相似文献   

8.
Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212–RM302–RM8085–RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.  相似文献   

9.
To facilitate marker assisted selection, there is an urgent need to construct a saturated genetic map of upland cotton (Gossypium hirsutum L.). Four types of markers including SSR, SRAP, morphological marker, and intron targeted intron–exon splice junction (IT-ISJ) marker were used to construct a linkage map with 270 F2:7 recombinant inbred lines derived from an upland cotton cross (T586 × Yumian 1). A total of 7,508 SSR, 740 IT-ISJ and 384 SRAP primer pairs/combinations were used to screen for polymorphism between the two mapping parents, and the average polymorphisms of three types of molecular markers represented 6.8, 6.6 and 7.0%, respectively. The polymorphic primer pairs/combinations and morphological markers were used to genotype 270 recombinant inbred lines, and a map including 604 loci (509 SSR, 58 IT-ISJ, 29 SRAP and 8 morphological loci) and 60 linkage groups was constructed. The map spanned 3,140.9 cM with an average interval of 5.2 cM between two markers, approximately accounting for 70.6% of the cotton genome. Fifty-four of 60 linkage groups were ordered into 26 chromosomes. Multiple QTL mapping was used to identify QTL for fiber quality traits in five environments, and thirteen QTL were detected. These QTL included four for fiber length (FL), two for fiber strength (FS), two for fiber fineness (FF), three for fiber length uniformity (FU), and two for fiber elongation (FE), respectively. Each QTL explained between 7.4 and 43.1% of phenotypic variance. Five out of thirteen QTL (FL1 and FU1 on chromosome 6, FL2, FU2 and FF1 on chromosome7) were detected in five environments, and they explained more than 20% of the phenotypic variance. Eleven QTL were distributed on A genome, while the other two on D genome.  相似文献   

10.
Four-way cross (4WC) involving four different inbred lines frequently appears in the cotton breeding programs. However, linkage analysis and quantitative trait loci (QTL) mapping with molecular markers in cotton has largely been applied to populations derived from a cross between two inbred lines, and few results of QTL dissection were conducted in a 4WC population. In this study, an attempt was made to construct a linkage map and identify QTL for yield and fiber quality traits in 4WC derived from four different inbred lines in Gossypium hirsutum L. A linkage map was constructed with 285 SSR loci and one morphological locus, covering 2113.3 cM, approximately 42% of the total recombination length of the cotton genome. A total of 31 QTL with 5.1–25.8% of the total phenotypic variance explained were detected. Twenty-four common QTL across environments showed high stability, and six QTL were environment-specific. Several genomic segments affecting multiple traits were identified. The advantage of QTL mapping using a 4WC were discussed. This study presents the first example of QTL mapping using a 4WC population in upland cotton. The results presented here will enhance the understanding of the genetic basis of yield and fiber quality traits and enable further marker-assisted selection in cultivar populations in upland cotton.  相似文献   

11.
Maize rough dwarf disease (MRDD) is a worldwide viral disease and causes significant yield losses in maize (Zea mays L.) production. In this study, we mapped and characterized quantitative trait loci (QTL) conferring resistance to MRDD using 89 F8 recombinant inbred lines derived from a cross between X178 (resistant parent) and B73 (susceptible). The population was evaluated for MRDD resistance in Baoding, Hebei Province, China (a hot spot of MRDD incidence) under natural infection in 2008 and 2009 and artificial inoculation in 2010. Genotypic variances for disease severity index (DSI) were highly significant in the population. Heritability estimates for DSI evaluation were 0.472 and 0.467 in 2008 and 2009, respectively. The linkage map was constructed using 514 gene-derived single nucleotide polymorphisms (SNPs) and 72 simple sequence repeat markers, spanning a genetic distance of 1,059.72?cM with an average interval of 1.8?cM between adjacent markers. Multiple-QTL model mapping detected a major QTL for MRDD resistance on chromosome 8, explaining 24.6?C37.3% of the phenotypic variation across three environments. In 2010, an additional QTL was detected on chromosome 10, explaining 15.8% of the phenotypic variation. The major QTL on chromosome 8 and the SNP markers (SNP31, SNP548, and SNP284) co-located with the QTL peak have potential for further functional genomic analysis and use in molecular marker-assisted selection for MRDD resistance in maize.  相似文献   

12.
A QTL affecting milk production traits was previously mapped to an interval of 7.5 cM on chromosome 6 in Norwegian dairy cattle. This article aimed to refine this position by increasing the map density in the region by a set of single-nucleotide polymorphisms and analyzing the data with a combined linkage and linkage disequilibrium approach. Through a series of single- and multitrait and single- and multipoint analyses, the QTL was positioned to an interval surrounded by the genes ABCG2 and LAP3. As no recombinations were detected in this interval, physical mapping was required for further refining. By using radiation hybrid mapping as well as BAC clones, the bovine and human comparative maps in the region are resolved, and the QTL is mapped within a distance of 420 kb.  相似文献   

13.
Leaf temperature has been shown to vary when plants are subjected to water stress conditions. Recent advances in infrared thermography have increased the probability of recording drought tolerant responses more accurately. The aims of this study were to identify the effects of drought on leaf temperature using infrared thermography. Furthermore, the genomic regions responsible for the expression of leaf temperature variation in maize seedlings (Zea mays L.) were explored. The maize inbred lines Zong3 and 87-1 were evaluated using infrared thermography and exhibited notable differences in leaf temperature response to water stress. Correlation analysis indicated that leaf temperature response to water stress played an integral role in maize biomass accumulation. Additionally, a mapping population of 187 recombinant inbred lines (RILs) derived from a cross between Zong3 and 87-1 was constructed to identify quantitative trait loci (QTL) responsible for physiological traits associated with seedling water stress. Leaf temperature differences (LTD) and the drought tolerance index (DTI) of shoot fresh weight (SFW) and shoot dry weight (SDW) were the traits evaluated for QTL analysis in maize seedlings. A total of nine QTL were detected by composite interval mapping (CIM) for the three traits (LTD, RSFW and RSDW). Two co-locations responsible for both RSFW and RSDW were detected on chromosomes 1 and 2, respectively, which showed common signs with their trait correlations. Another co-location was detected on chromosome 9 between LTD and shoot biomass, which provided genetic evidence that leaf temperature affects biomass accumulation. Additionally, the utility of a thermography system for drought tolerance breeding in maize was discussed.  相似文献   

14.
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with “broad and thin blade” characteristics and another with “long and narrow blade” characteristics, were applied in the hybridization to yield the F2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for “FL,” explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait “FW,” accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.  相似文献   

15.
Adaptation to the environment and reproduction are dependent on the date of flowering in the season. The objectives of this paper were to evaluate the effect of photoperiod on flowering date of the model species for legume crops, Medicago truncatula and to describe genetic architecture of this trait in multiple mapping populations. The effect of photoperiod (12 and 18 h) was analysed on eight lines. Quantitative variation in three recombinant inbred lines (RILs) populations involving four parental lines was evaluated, and QTL detection was carried out. Flowering occurred earlier in long than in short photoperiods. Modelling the rate of progression to flowering with temperature and photoperiod gave high R(2), with line-specific parameters that indicated differential responses of the lines to both photoperiod and temperature. QTL detection showed a QTL on chromosome 7 that was common to all populations and seasons. Taking advantage of the multiple mapping populations, it was condensed into a single QTL with a support interval of only 0.9 cM. In a bioanalysis, six candidate genes were identified in this interval. This design also indicated other genomic regions that were involved in flowering date variation more specifically in one population or one season. The analysis on three different mapping populations detected more QTLs than on a single population, revealed more alleles and gave a more precise position of the QTLs that were common to several populations and/or seasons. Identification of candidate genes was a result of integration of QTL analysis and genomics in M. truncatula.  相似文献   

16.
17.
Improved Catharanthus roseus cultivars are required for high yields of vinblastine, vindoline and catharanthine and/or serpentine and ajmalicine, the pharmaceutical terpenoid indole alkaloids. An approach to derive them is to map QTL for terpenoid indole alkaloids yields, identify DNA markers tightly linked to the QTL and apply marker assisted selection. Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage groups (LG), spanning 1786.5 cM, with 10.0 cM average intermarker distance. Estimates of correlations between traits allowed selection of seven relatively more important traits for terpenoid indole alkaloids yields. QTL analysis was performed on them using single marker (regression) analysis, simple interval mapping and composite interval mapping procedures. A total of 20 QTL were detected on five of eight LG, 10 for five traits on LG1, five for four traits on LG2, three for one trait on LG3 and one each for different traits on LG three and four. QTL for the same or different traits were found clustered on three LG. Co-location of two QTL for biomass traits was in accord of correlation between them. The QTL were validated for use in marker assisted selection by the recombinant inbred line which transgressively expressed 16 traits contributory to the yield vinblastine, vindoline and catharanthine from leaves and roots that possessed favourable alleles of 13 relevant QTL.  相似文献   

18.
Association mapping is a method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, the collection of 108 wheat germplasm accessions form China were evaluated for their plant heights, spike length, spikelets per spike, grains per spike, thousand kernel weight and spikelets density in 3 years at three locations. And they were genotyped with 85 SSR markers and 40 EST-SSR markers. The population structure was inferred on the basis of unlinked 48 SSR markers and 40 EST-SSR markers. The extent of LD on chromosome 2A was 2.3 cM. Association of 37 SSR loci on chromosomes 2A with six agronomic traits was analysed with a mixed linear model. A total of 14 SSR loci were significantly associated with agronomic traits. Some of the associated markers were located in the QTL region detected in previous linkage mapping analysis. Our results demonstrated that association mapping can enhance QTL information and achieves higher resolution with short LD extent.  相似文献   

19.
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi‐allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd‐B1, while the latter overlapped with the vernalization locus VRN‐A3. Additionally, 21 QTL with environment‐specific effects were found. Our results indicated a prevalence of environment‐specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.  相似文献   

20.
Fusarium ear rot is a prevalent disease in maize, reducing grain yields and quality. Resistance breeding is an efficient way to minimize losses caused by the disease. In this study, 187 lines from a RIL population along with the resistant (87-1) and susceptible (Zong 3) parents were planted in Zhengzhou and Beijing with three replications in years 2004 and 2006. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 246 polymorphic SSR markers with average genetic distances of 9.1 cM, the ear-rot resistance QTL were firstly analyzed by composite interval mapping (CIM). Three QTL were detected in both Zhengzhou and Beijing in 2004; and three and four QTL, respectively, were identified in 2006. The resistant parent contributed all resistance QTL. By using composite interval mapping and a mixed model (MCIM), significant epistatic effects on Fusarium ear rot as well as interactions between mapped loci and environments were observed across environments. Two QTL on chromosome 3 (3.04 bin) were consistently identified across all environments by the two methods. The major resistant QTL with the largest effect was flanked by markers umc1025 and umc1742 on chromosome 3 (3.04 bin), explaining 13–22% of the phenotypic variation. The SSR markers closely flanking the major resistance QTL will facilitate marker-assisted selection (MAS) of resistance to Fusarium ear rot in maize breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号