首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coleoptile sections from Avena sativa L. were exposed to non-lethal concentrations of peroxyacetyl nitrate (PAN). The sections were then incubated in solutions of 50 mM glucose plus 2.5 mM potassium phosphate with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). Growth after 4 hours was measured. A corresponding series of experiments was carried out and the effect of the 2,4-D treatments on enzymes utilizing uridine diphosphate glucose (14C-glucose) to form glucolipid and β-glucans including cellulose was determined. Growth in the PAN-treated sections was inhibited less at optimal and superoptimal auxin levels than at low auxin levels. Glucolipid synthetase activity was only slightly inhibited by PAN pretreatment and was reduced by increasing levels of auxin. Responses of alkali-soluble glucan and cellulose synthetases were similar to growth in both control and PAN treated tissues. It was concluded that the earlier reported response of cell wall metabolism in vivo probably is due to effects on these enzyme levels.  相似文献   

2.
Abstract The relationship between ethylene-induced leaf abscission and ethylene-induced inhibition of auxin transport in midrib sections of the leaf blade of Citrus sinensis L. Osbeck, Populus deltoides Bart, and Eucalyptus camaldulensis Dehn. was studied. These species differed greatly in their abscission response to ethylene. The kinetic trend of abscission resembled that of the inhibition of auxin transport in all three species. It is suggested that one of the main actions of ethylene in the leaf blade is to inhibit auxin transport in the veinal tissues, thus reducing the amount of auxin transported from the leaf blade to the abscission zone. Ethylene inhibited transport of both IAA (indole-3-acetic acid) and NAA (α-naphthaleneacetic acid) in the midrib sections. However, while ethylene enhanced the conjugation of IAA with aspartic acid and glucose in the apical (absorbing) segment of the midrib sections, it had little effect on the conjugation of NAA. The data indicate that auxin destruction through conjugation does not play a major role in the inhibition of auxin transport by ethylene.  相似文献   

3.
This paper reports that rhizogenesis in woody plant species in vitro was mediated through the basipetal transport of auxin from the shoot apex. This can directly induce roots in easy-to-root species such as Betula pendula, but was dependent upon an interaction with exogenous auxin in more difficult-to-root species such as Daphne cneorum, and to a lesser extent in Quercus robur. Shoot apex removal reduced rhizogenesis in Quercus, and inhibited it in Daphne, even in the presence of exogenous auxin, whereas rooting in Betula was unaffected. That basipetally transported auxin modulates rhizogenesis was demonstrated by the inhibition of root induction in Betula shoots by the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA), and by the substitution of indole-3-acetic acid (IAA) for a bud in Betula internodal sections.Abbreviations IAA indole-3-acetic acid - IBA indole-3-butyric acid - TIBA 2,3,5-triiodobenzoic acid - MS Murashige and Skoog medium - WPM woody plant medium  相似文献   

4.
Robert E. Cleland 《Planta》1991,186(1):75-80
A controversy exists as to whether or not the outer epidermis in coleoptiles is a unique target for auxin in elongation growth. The following evidence indicates that the outer epidermis is not the only auxin-responsive cell layer in either Avena sativa L. or Zea mays L. coleoptiles. Coleoptile sections from which the epidermis has been removed by peeling elongate in response to auxin. The magnitude of the response is similar to that of intact sections provided the incubation solution contains both auxin and sucrose. The amount of elongation is independent of the amount of epidermis removed. Sections of oat coleoptiles from which the epidermis has been removed from one side are nearly straight after 22 h in auxin and sucrose, despite extensive growth of the sections. These data indicate that the outer epidermis is not a unique target for auxin in elongation growth, at least in Avena and maize coleoptiles.Abbreviations IAA indole-3-acetic acid - PCIB p-chlorophenoxyiso-butyric This research was supported by grants from the National Aeronautics and Space Administration and from the U.S. Department of Energy. The help of S. Ann Dreyer is gratefully acknowledged.  相似文献   

5.
The effect of a 180° displacement from the normal vertical orientation on longitudinal growth and on the acropetal and basipetal movement of 14C-IAA was investigated in Avena sativa L. and Zea mays L. coleoptile sections. Inversion inhibits growth in intact sections (apex not removed) and in decapitated sections supplied apically with donor blocks containing auxin. Under aerobic conditions, inversion inhibits basipetal auxin movement and promotes acropetal auxin movement, whereas under anaerobic conditions, it does not influence the movement of auxin in either direction. Inversion retards the basipetal movement of the peak of a 30-minute pulse of auxin in corn.

The inversion-induced inhibition of basipetal auxin movement is not explained by an effect of gravity on production, uptake, destruction, exit from sections, retention in tissue, or purely physical movement of auxin. It is concluded that inversion (a) inhibits basipetal transport, the component of auxin movement that is metabolically dependent, and as a result (b) inhibits growth and (c) promotes acropetal auxin movement.

  相似文献   

6.
The somatic embryogenesis of conifers is a process susceptible to exogenous phytohormonal treatments. We report the effects of the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the auxin inhibitor p-chlorophenoxyisobutyric acid (PCIB) on the endogenous level of the auxin indole-3-acetic acid (IAA) and on the anatomical composition of early somatic embryos of Abies alba (European silver fir). The embryogenic suspensor mass (ESM) of Abies alba proliferated on a medium supplemented by 2,4-D as well as on an auxin-free medium. The endogenous level of IAA was significantly higher in the ESM cultivated on a medium supplemented by 2,4-D. The decrease in the endogenous level of IAA in the first week of maturation is one of the most important stimuli responsible for the subsequent development of embryos. However, suppression of IAA synthesis by an auxin inhibitor did not stimulate the development of embryos. The maturation of somatic embryos from the globular to the cotyledonary stage occurs when the concentration of endogenous auxin in the ESM (including the embryos) increases. Early somatic embryos proliferating on a medium supplemented by auxin had an increased probability of maturing successfully. Exogenous auxin treatment during maturation did not compensate for the auxin deficiency during proliferation.  相似文献   

7.
Mary Jo Vesper  Carol L. Kuss 《Planta》1990,182(4):486-491
To locate functionally the primary site of auxin action in growing cells, the pool of auxin relevant to induction of growth in maize (Zea mays L.) coleoptile sections was determined. A positive correlation was consistently noted between growth and intracellular levels of indole-3-acetic acid (IAA), i.e. growth appears to be relatively independent of the external level of IAA. N-1-Naphthylphthalamic acid (NPA), a potent inhibitor of auxin transport, was used to enhance accumulation of IAA in coleoptile cells. From the use of NPA, it is shown that: 1) increasing the accumulation of IAA in cells, while the external concentration is held constant, resulted in a concomitant increase in growth, and 2) blocking the exit of IAA from cells with NPA sustained an IAA-induced growth response in the absence of externally applied IAA. Furthermore, the absence of any alterations in auxin binding to microsomal fractions by NPA indicates that the action of NPA in causing enhancement of auxin-induced growth is based upon its inhibition of efflux of IAA from the cells. This research was supported by National Science Foundation grant No. DMB 8515925. The careful assistance of Laurie Brulport is gratefully acknowledged.  相似文献   

8.
The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxintreated tissues (4.5–5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5–6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.Abbreviations FS free space - IAA indole-3-acetic acid This research was supported by a grant from the National Adonautics and space Administration (NASA), NAGW 1394 to R.E.C., NASA grant NAGW-297 to M.L.E., and NASA grant NAG 1849 to D.L.R.  相似文献   

9.
We have examined the inward-rolling and outward-opening of petals from 90° stage carnation flowers (Dianthus charyophyllus L. cv. Pink Donor). Ethylene released from 2-chloroethylphosphonic acid (CEPA) induced in-rolling in the lower portions of the petals while that action was suppressed by an inhibitor of auxin transport. Another plant hormone, indole-3-acetic acid (IAA), intensified this ethylene-induced in-rolling. In contrast, when ethylene was not applied, the same IAA concentration promoted the opening of petal segments. Our data suggest that a low level of ethylene acts on IAA-induced opening. Likewise, we can speculate that endogenous concentrations of ethylene could be an important determinant of petal responses that involve interactions between ethylene and IAA.  相似文献   

10.
3H-IAA transport in excised sections of carnation cuttings was studied by using two receiver systems for recovery of transported radioactivity: agar blocks (A) and wells containing a buffer solution (B). When receivers were periodically renewed, transport continued for up to 8 h and ceased before 24 h. If receivers were not renewed, IAA transport decreased drastically due to immobilization in the base of the sections. TIBA was as effective as NPA in inhibiting the basipetal transport irrespective of the application site (the basal or the apical side of sections). The polarity of IAA transport was determined by measuring the polar ratio (basipetal/acropetal) and the inhibition caused by TIBA or NPA. The polar ratio varied with receiver, whereas the inhibition by TIBA or NPA was similar. Distribution of immobilized radioactivity along the sections after a transport period of 24 h showed that the application of TIBA to the apical side or NPA to the basal side of sections, increased the radioactivity in zones further from the application site, which agrees with a basipetal and acropetal movement of TIBA and NPA, respectively. The existence of a slow acropetal movement of the inhibitor was confirmed by using 3H-NPA. From the results obtained, a methodological approach is proposed to measure the variations in polar auxin transport. This method was used to investigate whether the variations in rooting observed during the cold storage of cuttings might be related to changes in polar auxin transport. As the storage period increased, a decrease in intensity and polarity of auxin transport occurred, which was accompanied by a delay in the formation and growth of adventitious roots, confirming the involvement of polar auxin transport in supplying the auxin for rooting. Received April 19, 1999; accepted December 2, 1999  相似文献   

11.
The ipt gene from the T-DNA of Agrobacterium tumefaciens was transferred to tobacco (Nicotiana tabacum L.) in order to study the control which auxin appears to exert over levels of cytokinin generated by expression of this gene. The transgenic tissues contained elevated levels of cytokinins, exhibited cytokinin and auxin autonomy and grew as shooty calli on hormone-free media. Addition of 1-naphthylacetic acid to this culture medium reduced the total level of cytokinins by 84% while 6-benzylaminopurine elevated the cytokinin level when added to media containing auxin. The cytokinins in the transgenic tissue were labelled with 3H and auxin was found to promote conversion of zeatin-type cytokinins to 3H-labelled adenine derivatives. When the very rapid metabolism of exogenous [3H]zeatin riboside was suppressed by a phenylurea derivative, a noncompetitive inhibitor of cytokinin oxidase, auxin promoted metabolism to adenine-type compounds. Since these results indicated that auxin promoted cytokinin oxidase activity in the transformed tissue, this enzyme was purified from the tobacco tissue cultures. Auxin did not increase the level of the enzyme per unit tissue protein, but did enhance the activity of the enzyme in vitro and promoted the activity of both glycosylated and non-glycosylated forms. This enhancement could contribute to the decrease in cytokinin level induced by auxin. Studies of cytokinin biosynthesis in the transgenic tissues indicated that trans-hydroxylation of isopentenyladenine-type cytokinins to yield zeatin-type cytokinins occurred principally at the nucleotide level.Abbreviations Ade adenine - Ados adenosine - BA 6-benzylaminopurine - C control - Con A concanavallin A - CP cellulose phosphate - IPT isopentenyl transferase - NAA 1-naphthylacetic acid - NP normal phase - NPPU N-(3-nitrophenyl)-N-phenylurea - RIA radioimmunoassay - RP reversed phase We wish to thank Dr. J. Zwar for supplying phenylurea derivitives.  相似文献   

12.
The effect of NAA (1-naphthaleneacetic acid) and morphactin (methyl 2-chloro-9-hydroxyfluorene-9-carboxylate) on the uptake and incorporation of uridine-5-3H and l -leucineU-14C was studied in senescing bean endocarp (Phaseolus vulgaris L. cv. Kentucky wonder pole beans) sections. Both growth regulators inhibited uptake of these precursors and appeared to affect different components of the uptake mechanism. A possible synergistic inhibition was seen in case of leucine, but in case of uridine, the effect was less than additive. A strong synergistic increase in the incorporation of l -leucine into protein was seen. Thus, morphactin interacted with an exogenously applied auxin at the level of the protein synthesizing apparatus.  相似文献   

13.
A biphasic auxin dose-response curve has been obtained for indole-acetic acid (IAA)-stimulated growth of subapical sections of coleoptiles from totally dark-grown oats (Avena sativa L. cv Lodi). The curve for growth at 6 h is composed of a log-linear phase and a modified bell-shaped phase separated by a plateau. The curve is log-linear from 0.003 to 0.4 micromolar IAA when sections are incubated in pH 5.9 buffer. The plateau of IAA concentration-neutral growth is seen from 0.4 to 4.0 micromolar IAA. Further increase in growth occurs from 4.0 to 10 micromolar IAA. Changing the pH of the buffer from 5.9 to 5.5 or 6.2 changes the shape of the curve, shifting the plateau to lower IAA concentration, or abolishing it, respectively. The synthetic auxin 2,4-dichlorophenoxyacetic acid also shows a biphasic dose-response curve, but the synthetic auxin 1-naphthalene acetic acid does not. The plateau is not affected by the auxin-transport inhibitor 2,3,5-triiodobenzoic acid. The plateau is eliminated by taking sections from coleoptiles grown under continuous dim red light. We advance a model to account for these results based on two modes of auxin uptake into the cell: carrier-mediated uptake and uptake via chemiosmotic diffusion.  相似文献   

14.
Ascorbic acid was found to increase bud development in Pisum sativum L. The interactions of ascorbic acid with indole-3-acetic acid, kinetin and gibberellic acid were studied. It was found that ascorbic acid promoted bud growth and overcame the inhibitory effect of auxin. When applied with gibberellin, bud growth was greatly enhanced. Ascorbic acid promoted bud development in red light only; it did not in far-red or dark.  相似文献   

15.
The endogenous levels of auxin, gibberellin, and inhibitors were followed in monoecious and gynoecious cucumber (Cucumis sativus L.) plants, and in plants treated with the ethylene-releasing compound Ethephon (2-chloroethyl phosphonic acid). Higher auxin inhibitor and lower gibberellin levels were associated with female tendency. The endogenous level of gibberellin and auxin decreased in Ethephon-treated plants. Application of Ethephon induced a rise in abscisic acid. Root application of abscisic acid promoted female tendency of gynoecious cucumbers grown under conditions which increase maleness. High CO2 levels, which are known to antagonize ethylene, increased maleness of gynoecious cucumbers. The possibility of interrelationship between gibberellin, auxin, ethylene, and abscisic acid on sex expression are discussed.  相似文献   

16.
The short-term effects of auxin (indole-3-acetic acid) and fusicoccin (FC) on Rb+ uptake and malate accumulation in Avena sativa L. coleoptile sections have been investigated. FC stimulates 86Rb+ uptake within 1 min while auxin-enhanced uptake begins after a 15–20-min lag period. Auxin has little or no effect on 86Rb+ uptake at external pHs of 6.0 or less, but substantial auxin effects can be observed in the range of pH 6.5 to 7.5. Competition studies indicate that the uptake mechanism is specific for Rb+ and K+. After 3 h of auxin treatment the total amount of malate in the coleoptile sections is doubled compared to control sections. FC causes a doubling of malate levels within 60 min of treatment. Auxin-induced malate accumulation exhibits a sensitivity to inhibitors and pH which is similar to that observed for the H+-extrusion and Rb+-uptake responses. Both auxin- and FC-enhanced malate accumulation are stimulated by monovalent cations but this effect is not specific for K+.Abbreviations FC fusicoccin - IAA indole-3-acetic acid  相似文献   

17.
Growth reactions of wbeat coleoptile sections following a brief pretreament in indole-3-acetic acid (LAA) were studied. The growth versus concentration curves 24 hours after the treatment showed a minimum value surrounded by bigber values. The minimum was never at concentrations lower than 10-5M lAA but it could be found at higher concentrations after short pretreatment periods. The growth versus time curves reveated that the hormone treatment cansed the growth rate initially to increase but later on to decrease. The decrease was followed by a second increase for some treatments. Analysis of IAA content after the pretreatment showed that the attered growth patterns could be ascribed to declining auxin content with time, but not to thc actual concentration in the sections. The results indicate that the metabolic activation brought about by IAA leads to its own disappearance. Such a phenomenon was mirroretl in effects of IAA on hte net synthesis of ribonucleic acid.  相似文献   

18.
Tobacco (Nicotiana tabacum L. cv. W. 38) callus grown on a shoot-forming medium was exposed to gibberellic acid (GA3) and abscisic acid (ABA) for varying lengths of time and at different periods during culture. The results suggest that if the tissue accumulated sufficient GA3 prior to the initiation of meristemoids and shoot primordia, repression of shoot formation occurred. This repression was not reversed by increasing the levels of auxin or cytokinin in the medium, but ABA could partially overcome the GA3 repression of shoot formation.  相似文献   

19.
Influence of auxin on the establishment of bilateral symmetry in monocots   总被引:5,自引:0,他引:5  
To study the influence of auxin on the shift from radial to bilateral symmetry during monocot embryogenesis, the fate of young wheat (Triticum aestivum L.) zygotic embryos has been manipulated in vitro by adding auxins, an auxin transport inhibitor and an auxin antagonist to the culture medium. The two synthetic auxins used, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), induced identical phenotypes. In the most severe cases, the shift from radial to bilateral symmetry was blocked resulting in continuous uniform radial growth. The natural auxin indole-3-acetic acid (IAA) induced the same phenotype. The effect of 2,4,5-T and 2,4D depended on their concentrations and on the developmental stage of the isolated embryos. In the presence of 2,3,5-triiodobenzoic acid (TIBA), an auxin transport inhibitor, the overall embryo symmetry was abnormal. The relative position of the shoot apical meristem in comparison with the scutellum was anomalous. The quality of shoot apical meristem and the scutellum differentiation was altered compared with normal developed embryos. No root meristem was differentiated. The effect of TIBA depends on its concentration and on the developmental stage of the isolated embryos. By contrast, 2-(pchlorophenoxy)-2-methylpropionic acid (PCIB) which is described as an auxin antagonist, has no visible direct effect on the embryonic symmetry. These observations indicate that auxin influences the change from radial symmetry to embryonic polarity during monocot embryogenesis. A model of auxin action during early wheat embryo development is proposed.  相似文献   

20.
We studied the effects of auxin (indole-3-acetic acid) on formation of the primary polarity axis in zygotes of the brown algae Fucus vesiculosusL. Within the first 2.5 h after fertilization, the zygotes release this phytohormone in the ambient medium. The treatment of developing zygotes with the inhibitor of indole-3-acetic acid transport from the cell 2,3,5-triiodobenzoic acid at 5 mg/l arrests the auxin secretion and leads to its accumulation in the cells. This causes a significant delay in zygote polarization. The treatment of zygotes with the exogenous indole-3-acetic acid at 1 mg/l stimulates cell polarization and formation of a rhizoid protuberance. When auxin was added to the medium with triiodobenzoic acid, the inhibitory effect of the latter was eliminated. It has been proposed that the content of indole-3-acetic acid in the ambient medium is a key factor in the induction of polarity of the F. vesiculosus zygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号