首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.  相似文献   

2.
Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.  相似文献   

3.
4.
Rac activation and inactivation control plasticity of tumor cell movement   总被引:1,自引:0,他引:1  
Tumor cells exhibit two different modes of individual cell movement. Mesenchymal-type movement is characterized by an elongated cellular morphology and requires extracellular proteolysis. In amoeboid movement, cells have a rounded morphology, are less dependent on proteases, and require high Rho-kinase signaling to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible. We show that mesenchymal-type movement in melanoma cells is driven by activation of the GTPase Rac through a complex containing NEDD9, a recently identified melanoma metastasis gene, and DOCK3, a Rac guanine nucleotide exchange factor. Rac signals through WAVE2 to direct mesenchymal movement and suppress amoeboid movement through decreasing actomyosin contractility. Conversely, in amoeboid movement, Rho-kinase signaling activates a Rac GAP, ARHGAP22, that suppresses mesenchymal movement by inactivating Rac. We demonstrate tight interplay between Rho and Rac in determining different modes of tumor cell movement, revealing how tumor cells switch between different modes of movement.  相似文献   

5.
The strategies of the sit-to-stand movement are investigated by describing the movement in terms of the topology of an associated phase diagram. Kinematic constraints are applied to describe movement sequences, thus reducing the dimension of the phase space. This dimensional reduction allows us to apply theorems of topological dynamics for two-dimensional systems to arrive at a classification of six possible movement strategies, distinguished by the topology of their corresponding phase portrait. Since movement is treated in terms of topological structure rather than specific trajectories, individual variations are automatically included, and the approach is by nature model independent. Pathological movement is investigated, and this method clarifies how subtle abnormalities in movement lead to difficulties in achieving a stable stance upon rising from a seated position. This article was processed by the author using the LATEX style file pljour2 from Springer-Verlag.  相似文献   

6.
雄蕊运动指雄蕊在自身能量支持下发生的主动运动,不包括雄蕊在访花者触碰下造成的被动位移。该文总结了雄蕊的应激运动、快速猛烈弹射、缓慢运动以及级联运动等4种主要类型,分析了这些运动类型的系统分布及繁殖适应意义等方面的研究进展。雄蕊的应激运动由访花者或其他外力诱发,可能起到促进散粉和实现繁殖保障的作用;雄蕊快速猛烈的弹射运动可将花粉猛然撒向空中或访花者身上,促进了花粉的风媒或虫媒散布;缓慢运动的雄蕊可能通过在不同花期改变雄蕊的空间位置和雌雄异位程度来调节繁殖策略,或主动将雄蕊花药移至特定部位(如柱头表面)实现自交;雄蕊逐一、依次发生的级联运动较为复杂,主要分布在刺莲花科、梅花草科、旱金莲科和芸香科中,目前还缺乏实验研究;但根据"花粉呈现理论"以及其他类型的雄蕊运动研究结果,雄蕊的级联运动可以将花粉分批呈现给不同的传粉者,通过不同传粉者的分别传粉来提高花粉的输出;而且可避免已散粉雄蕊对即将散粉雄蕊的干扰,同时可能也降低了雌雄功能干扰和(或)花内自交。在芸香(Ruta graveolens)中,级联运动之后的雄蕊还会在花末期再同时向花中央运动;这种多向、多次运动方式是目前发现的最复杂的雄蕊运动类型。雄蕊运动领域值得今后开展进一步实验研究的方向主要有:1)雄蕊运动尤其是级联运动对雌雄功能干扰(性别间干扰)、雄蕊与雄蕊的"性别内干扰"等植物繁殖格局的影响;2)雄蕊运动与雌雄异熟、雌雄异位等花部特征的相互作用;3)雄蕊运动复杂类型的生理与发育机制。  相似文献   

7.
在运动过程中,时距知觉的能力非常重要,能帮助个体对时长进行判断及对事件的发生做出预测和准备.近年来,越来越多的研究发现运动本身会直接影响个体的时距知觉.本文分别从运动参数、运动阶段、视觉运动刺激和运动有关的个体因素四个方面梳理了运动对时距知觉产生影响的行为学证据.目前已经有大量研究从不同角度证明,大脑运动系统组成了支持...  相似文献   

8.
Kinesin is a force-generating ATPase that drives the sliding movement of microtubules on glass coverslips and the movement of plastic beads along microtubules. Although kinesin is suspected to participate in microtubule-based organelle transport, the exact role it plays in this process is unclear. To address this question, we have developed a quantitative assay that allows us to determine the ability of soluble factors to promote organelle movement. Salt-washed organelles from squid axoplasm exhibited a nearly undetectable level of movement on purified microtubules. Their frequency of movement could be increased greater than 20-fold by the addition of a high speed axoplasmic supernatant. Immunoadsorption of kinesin from this supernatant decreased the frequency of organelle movement by more than 70%; organelle movements in both directions were markedly reduced. Surprisingly, antibody purified kinesin did not promote organelle movement either by itself or when it was added back to the kinesin-depleted supernatant. This result suggested that other soluble factors necessary for organelle movement were removed along with kinesin during immunoadsorption of the supernatant. A high level of organelle motor activity was recovered in a high salt eluate of the immunoadsorbent that contained only little kinesin. On the basis of these results we propose that organelle movement on microtubules involves other soluble axoplasmic factors in addition to kinesin.  相似文献   

9.
This article uses simple models to explore the impact of adaptive movement by consumers on the population dynamics of a consumer-resource metacommunity consisting of two identical patches. Consumer-resource interactions within a patch are described by the Rosenzweig-MacArthur predator-prey model, and these dynamics are assumed to be cyclic in the absence of movement. The per capita movement rate from one patch to the other is an increasing function of the difference between the per capita birth minus death rate in the destination patch and that in the currently occupied patch. Several variations on this model are considered. Results show that adaptive movement frequently creates anti-phase cycles in the two patches; these suppress the predator-prey cycle and lead to low temporal variation of the total population sizes of both species. Paradoxically, even when movement is very sensitive to the fitness difference between patches, perfect synchrony of patches is often much less likely than in comparable systems with random movement. Under these circumstances adaptive movement of consumers often generates differences in the average properties of the two patches. In addition, mean global densities and responses to global perturbations often differ greatly from similar systems with no movement or random movement.  相似文献   

10.
The Vector Integration To Endpoint (VITE) circuit describes a real time neural network model which simulates behavioral and neurobiological properties of planned arm movements by the interaction of two populations of neurons. This model is generalized to include delay between the interacting populations, which is found to have a detrimental effect on movement accuracy. Conditions are given on the model parameters for accurate movement and target overshoot, where we show that there exists a non-zero critical value of the delay which the circuit can support while maintaining accurate movement. This critical delay depends on the movement speed, and becomes arbitrarily large for sufficiently slow movement. Thus neurobiological or artificial systems modelled by the VITE sensory-motor loop can tolerate an arbitrarily large delay if the movement speed is sufficiently slow.Acknowledgement This project was partially supported by Mathematics for Information Technology and Complex Systems, by the Canada Research Chairs program, and by the Natural Science and Engineering Research Council of Canada.  相似文献   

11.
How do plant virus nucleic acids move through intercellular connections?   总被引:20,自引:0,他引:20  
In addition to their function in transport of water, ions, small metabolites, and growth factors in normal plant tissue, the plasmodesmata presumably serve as routes for cell-to-cell movement of plant viruses in infected tissue. Virus cell-to-cell spread through plasmodesmata is an active process mediated by specialized virus encoded movement proteins; however, the mechanism by which these proteins operate is not clear. We incorporate recent information on the biochemical properties of plant virus movement proteins and their interaction with plasmodesmata in a model for transport of nucleic acids through plasmodesmatal channels. We propose that only single stranded (ss) nucleic acids can be transported efficiently through plasmodesmata, and that movement proteins function as molecular chaperones for ss nucleic acids to form unfolded movement protein-ss nucleic acid complexes. These complexes are targeted to plasmodesmata. Plasmodesmatal permeability is then increased following interaction with movement protein and the entire movement complex or its nucleic acid component is translocated across the plasmodesmatal channel.  相似文献   

12.
The study of chloroplast photorelocation movement is progressing rapidly now that mutants for chloroplast movement have become available in Arabidopsis thaliana. However, mechanistic approaches in cell biology still stand to elucidate the mechanisms and regulations of such movement. The fern Adiantum capillus-veneris and the moss Physcomitrella patens are particularly suitable materials for analyzing the kinetics of intracellular chloroplast movement. In these plants, chloroplast movement is induced by red light as well as blue light, mediated by phytochrome and blue light receptor, respectively. In this paper, we review the unique force-generating system for chloroplast motility in P. patens. In addition to light-induced chloroplast movement, we also summarize mechanically induced chloroplast movement in these plants and the motility systems involved. Finally, the different dependency of mechano- and photo-relocation movement on external Ca2+ is discussed. Electronic Publication  相似文献   

13.
During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.  相似文献   

14.
气孔蒸腾中保卫细胞原生质的调控作用   总被引:4,自引:0,他引:4  
气孔运动的机理一般公认为保卫细胞的渗透调节。作者所在研究小组近几年的工作表明:动物神经递质乙酰胆碱参与气孔运动的调节;植物细胞骨架微管、微丝在气孔运动中起重要作用。因面提出保卫细胞原生质在气孔蒸腾中的气孔蒸腾中的作用值得进一步研究。  相似文献   

15.
Acropetal and basipetal movement of indole-3-acetic acid through coleoptiles of Avena sativa L. was studied. Sections 10-mm long were supplied with either apical or basal sources containing C(14) carboxyl-labeled indoleacetic acid (10(-5)m). Anaerobic conditions inhibit metabolically dependent movement (transport) thus reducing basipetal but not acropetal movement. Total inhibition of basipetal transport abolishes the polarity of auxin uptake and movement. The nonpolar movement that remains in anaerobic sections is free diffusion with an average diffusion coefficient of approximately 1 x 10(-4) mm(2) per second. During an 8-hour diffusion, at least the first millimeter of the section comes to equilibrium at approximately the same concentration as the donor.Acropetal movement is probably by diffusion and is accompanied by an aerobic immobilization of indoleacetic acid that increases more than proportionally to concentration. Anaerobic conditions totally prevent this immobilization and reduce acropetal uptake but not the amount of indoleacetic acid moving into the upper parts of the section; there is, therefore, no evidence for acropetal transport.Polarity of auxin movement in aerobic coleoptile sections is achieved by strict basipetal transport of auxin. The basipetal transport may intensify the polarity by recycling auxin that is moving acropetally.  相似文献   

16.
Abstract

The present study investigated whether the deviation of the performed movement cycle from the required cycle during polyrhythmic bimanual (BM) movement depends on the loci of the visual cues that guide the rhythm of finger movements. Twelve healthy right-handed males rhythmically abducted and adducted the index finger or index fingers with the rhythm of the visual cues. During UM movement, the visual cue guiding the rhythm of finger movement was provided in the left or right visual hemifield. During 2:3 polyrhythmic BM movement, two visual cues, one guiding the rhythm of the left finger movement and another guiding the rhythm of the right finger movement, were provided in a single visual hemifield, or each visual cue guiding each finger movement was provided in each visual hemifield. During polyrhythmic BM movement, the cycle duration of the slower side of the movement guided by the rhythm of the visual cues provided in one visual hemifield was shorter than the required cycle duration, and the magnitude of the shortage in this condition was greater than that guided by each visual cue provided in each visual hemifield. Slower side of the movement is more precisely performed by each visual cue guiding each finger movement in each visual hemifield rather than that guided by visual cues provided in one visual hemifield during polyrhythmic BM movement. This may be explained by bottle-neck model in which visual information overflows the processing capacity when two visual processes are simultaneously provided in a single visual cortex.  相似文献   

17.
The diagnosis and treatment of many orthopaedic and neurological disorders can benefit from movement analysis of the upper extremities by facilitating an objective and quantitative assessment of the compensatory movement strategies of patients. In this paper, a procedure for upper extremity movement analysis is introduced, which allows the simultaneous measurement of movement in all anatomical axes of the kinematical joint chain of the upper body. In first clinical applications it was shown that the procedure facilitates the detection of pathological movement patterns and therefore, adds significantly to the understanding of upper extremity movement strategies.  相似文献   

18.
When placed on a temperature gradient, a Drosophila larva navigates away from excessive cold or heat by regulating the size, frequency, and direction of reorientation maneuvers between successive periods of forward movement. Forward movement is driven by peristalsis waves that travel from tail to head. During each reorientation maneuver, the larva pauses and sweeps its head from side to side until it picks a new direction for forward movement. Here, we characterized the motor programs that underlie the initiation, execution, and completion of reorientation maneuvers by measuring body segment dynamics of freely moving larvae with fluorescent muscle fibers as they were exposed to temporal changes in temperature. We find that reorientation maneuvers are characterized by highly stereotyped spatiotemporal patterns of segment dynamics. Reorientation maneuvers are initiated with head sweeping movement driven by asymmetric contraction of a portion of anterior body segments. The larva attains a new direction for forward movement after head sweeping movement by using peristalsis waves that gradually push posterior body segments out of alignment with the tail (i.e., the previous direction of forward movement) into alignment with the head. Thus, reorientation maneuvers during thermotaxis are carried out by two alternating motor programs: (1) peristalsis for driving forward movement and (2) asymmetric contraction of anterior body segments for driving head sweeping movement.  相似文献   

19.
The movement of organelles in the germinated pollen of Oenothera odorata was studied in detail by video microscopy. The image of the organelle movement was processed by computergation. The pollen grain of Oenothera odorata is large and easy to germinate in vitro and is suitable for the study of organelle movement . The motion of organelles in the germinated pollen grains and pollen tubes is very vigorous. But the movement of organelles in the pollen tubes is more vigorous than that in the germinating pollen grains. Some of their motion is saltatory. A kind of fibrils was observed in the germinated pollen grains. They are supposed to be made up of actin filaments. Some of the fibrils have one end connected to the plasma membrane and others have both ends linked to the plasma membrane , forming a network. Organelles move along the fibrils continuosely and the speed changes constantly . The speed of movement of organelles is not related to their dimensions. Cytochalasin B can inhibit the movement of organelles. Our results suggest that the movement of organelles is independent of the cytoplasmic streaming in the germinated pollen grains and pollen tubes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号