首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmembrane proteins destined to endosomes are selectively accumulated in clathrin-coated pits at the plasma membrane and rapidly internalized in clathrin-coated vesicles. The recognition of specific sequence motifs in transmembrane cargo by coated-pit proteins confers specificity on the endocytic process. Interaction of membrane cargo with the clathrin adaptor protein complex AP-2 is the major mechanism of cargo sorting into coated pits in mammalian cells. Recent studies have revealed a variety of alternative mechanisms of cargo recruitment involving additional adaptor proteins. These alternative mechanisms appear to be particularly important during clathrin-mediated endocytosis of signaling receptors.  相似文献   

2.
3.
Migrating cells extend protrusions to establish new adhesion sites at their leading edges. One of the driving forces for cell migration is the directional trafficking of cell-adhesion molecules such as integrins. Here, we show that the endocytic adaptor protein Numb is an important component of the machinery for directional integrin trafficking in migrating cells. Numb binds to integrin-betas and localizes to clathrin-coated structures (CCSs) at the substratum-facing surface of the leading edge. Numb inhibition by RNAi impairs both integrin endocytosis and cell migration toward integrin substrates. Numb is regulated by phosphorylation since the protein is released from CCSs and no longer binds integrins when phosphorylated by atypical protein kinase C (aPKC). Because Numb interacts with the aPKC binding partner PAR-3, we propose a model in which polarized Numb phosphorylation contributes to cell migration by directing integrin endocytosis to the leading edge.  相似文献   

4.
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.  相似文献   

5.
Calpain: a role in cell transformation and migration   总被引:7,自引:0,他引:7  
Calpains represent a well conserved family of calcium-dependent proteolytic enzymes. Recent progress in determining the three-dimensional crystal structure of calpains and generation of calpain knock out animals have significantly advanced our understanding of both the activation mechanism and physiological role of this protease family. Studies applying molecular intervention strategies and genetic ablation of calpain now provide indisputable evidence that calpain activity contributes to remodelling of the actin cytoskeleton, cell migration and oncogenic transformation. Src and epidermal growth factor receptor (EGFR) stimulated cell motility is dependent upon calpain activation. In addition, calpain promotes accelerated cell-cycle progression and anchorage-independent growth of Src transformed cells. In vivo studies demonstrate a link between calpain expression levels and activity with tumour development and invasion. Thus, recent investigations suggest that the role of calpain in promoting cell transformation and cell migration may have important in vivo consequences in the context of cancer pathobiology.  相似文献   

6.
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. During development, a variety of reciprocal signaling interactions between glia and neurons dictate all parts of nervous system development. Glia may provide attractive, repulsive, or contact-mediated cues to steer neuronal growth cones and ensure that neurons find their appropriate synaptic targets. In fact, both neurons and glia may act as migrational substrates for one another at different times during development. Also, the exchange of trophic signals between glia and neurons is essential for the proper bundling, fasciculation, and ensheathement of axons as well as the differentiation and survival of both cell types. The growing number of links between glial malfunction and human disease has generated great interest in glial biology. Because of its relative simplicity and the many molecular genetic tools available, Drosophila is an excellent model organism for studying glial development. This review will outline the roles of glia and their interactions with neurons in the embryonic nervous system of the fly.  相似文献   

7.
Gazing at a giant redwood tree in the Pacific Northwest, that has grown to enormous heights over centuries, does little to convince one that plants are built for speed and versatility. Even at the cellular level, a system of polymers-the cell skeleton or cytoskeleton-integrates signals and generates subcellular structures spanning scales of a few nanometers to hundreds of micrometers that coordinate cell growth. The term cytoskeleton itself connotes a stable structure. Clearly, this is not the case. Recent studies using advanced imaging modalities reveal the plant actin cytoskeleton to be a highly dynamic, ever changing assemblage of polymers. These insights along with growing evidence about the biochemical/biophysical properties of plant cytoskeletal polymers, especially those obtained by single filament imaging and reconstituted systems of purified proteins analyzed by total internal reflection fluorescence microscopy, allow the generation of a unique model for the dynamic turnover of actin filaments, termed stochastic dynamics. Here, we review several significant advances and highlight opportunities that will position plants at the vanguard of research on actin organization and turnover. A challenge for the future will be to apply the power of reverse-genetics in several model organisms to test the molecular details of this new model.  相似文献   

8.
K H Sit  B H Bay  K P Wong 《Tissue & cell》1990,22(6):785-802
Cells that are detached through Na+/H+ antiport-mediated cell retraction (the flat-to-round or FTR change) are as viable as trypsinized cells despite unusually high trypan blue dye inclusion. Even high molecular weight dextran and carbon particles are easily loaded following the FTR change. ECM of confluent cultures of human keloid fibroblasts and Chang liver epitheloid cells stained directly by fluorescein-conjugated monoclonal anti-fibronectin is dramatically reduced or removed upon cell rounding. At the ultrastructural level, distinctive channels and vacuoles filled with extracellular material are seen, resolved at later stages as peripheral granular patches which too disappear when the rounded cells are reflattened in round-to-flat (RTF) change. Antiport-mediated endocytosis (AME) could explain the drastic reduction in cell area concomitant with cell rounding and detachment. AME provides a new way of loading cells with impermeant macromolecules.  相似文献   

9.
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.  相似文献   

10.
Epidermal Growth Factor (EGF) is an important regulator of normal epithelial and carcinoma cell migration. The mechanism by which EGF induces cell migration is not fully understood. A recent report in Nature Cell Biology (Katz et al., 2007) demonstrates that EGF regulates migration through a switch in the expression of two tensin isoforms, weakening the association of beta1 integrin with the actin cytoskeleton in focal adhesions.  相似文献   

11.
Cell migration is essential for tissue development in different physiological and pathological conditions. It is a complex process orchestrated by chemistry, biological factors, microstructure and surrounding mechanical properties. Focusing on the mechanical interactions, cells do not only exert forces on the matrix that surrounds them, but they also sense and react to mechanical cues in a process called mechano-sensing. Here, we hypothesize the involvement of mechano-sensing in the regulation of directional cell migration through a three-dimensional (3D) matrix. For this purpose, we develop a 3D numerical model of individual cell migration, which incorporates the mechano-sensing process of the cell as the main mechanism regulating its movement. Consistent with this hypothesis, we found that factors, such as substrate stiffness, boundary conditions and external forces, regulate specific and distinct cell movements.  相似文献   

12.
IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34+ progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). FcεRI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (FcεRI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either FcεRI or S1P receptors involves activation of both PI3K and MAPK.  相似文献   

13.
Signaling pathways in sensitization: toward a nociceptor cell biology   总被引:3,自引:0,他引:3  
Hucho T  Levine JD 《Neuron》2007,55(3):365-376
The electrophysiological properties of peripheral neurons activated by noxious stimuli, the primary afferent nociceptors, have been investigated intensively, and our knowledge about the molecular basis of transducers for noxious stimuli has increased greatly. In contrast, understanding of the intracellular signaling mechanisms regulating nociceptor sensitization downstream of ligand binding to the receptors is still at a relatively nascent stage. After outlining the initiated signaling cascades, we discuss the emerging plasticity within these cascades and the importance of subcellular compartmentalization. In addition, the recently realized importance of functional interactions with the extracellular matrix, cytoskeleton, intracellular organelles such as mitochondria, and sex hormones will be introduced. This burgeoning literature establishes new cellular features crucial for the function of nociceptive neurons and argues that additional focus should be placed on understanding the complex integration of cellular events that make up the "cell biology of pain."  相似文献   

14.
We consider optimal conservation strategies for an endangered population. We assume that juvenile survival is affected by unpredictable environmental fluctuation and can be improved by costly conservation effort. The initial population size is not accurately known at the time that the conservation effort level is chosen, but the uncertainty of its estimate can be reduced by a costly monitoring effort. In a previous paper, we analysed the optimal management strategy that minimizes a weighted sum of extinction probability and economic costs when only a single year is considered. Here we examine the case in which the conservation period lasts for several years by dynamic programming with incompletely observed process states. We study the optimal levels of the conservation and the monitoring efforts, and their dependence on the length of the conservation period and other parameters. The main conclusions are: (1) The optimal conservation effort in the first year depends on the accuracy of the information on the population size in the first year, but is almost independent of the accuracy of the information in later years. (2) When the risk of population extinction is small, the optimal conservation effort increases with the uncertainty of the population size. In contrast when the population is endangered, the optimal conservation effort decreases with the uncertainty of the population size. (3) The optimal conservation and monitoring efforts both increase with the length of the conservation period, provided that the population is relatively safe. However, if the population is endangered, both types of effort become smaller when the conservation period increases.  相似文献   

15.
The processes of protrusion and retraction during cell movement are driven by the turnover and reorganization of the actin cytoskeleton. Within a reaction–diffusion model which combines processes along the cell membrane with processes within the cytoplasm a Turing type instability is used to form the necessary polarity to distinguish between cell front and rear and to initiate the formation of different organizational arrays within the cytoplasm leading to protrusion and retraction. A simplified biochemical network model for the activation of GTPase which accounts for the different dimensionality of the cell membrane and the cytoplasm is used for this purpose and combined with a classical Helfrich type model to account for bending and stiffness effects of the cell membrane. In addition streaming within the cytoplasm and the extracellular matrix is taken into account. Combining these phenomena allows to simulate the dynamics of cells and to reproduce the primary phenomenology of cell motility. The coupled model is formulated within a phase field approach and solved using adaptive finite elements.  相似文献   

16.
17.
The actin-associated protein Sla1p, through its SHD1 domain, acts as an adaptor for the NPFX(1,2)D endocytic targeting signal in yeast. Here we report that Wsc1p, a cell wall stress sensor, depends on this signal-adaptor pair for endocytosis. Mutation of NPFDD in Wsc1p or expression of Sla1p lacking SHD1 blocked Wsc1p internalization. By live cell imaging, endocytically defective Wsc1p was not concentrated at sites of endocytosis. Polarized distribution of Wsc1p to regions of cell growth was lost in the absence of endocytosis. Mutations in genes necessary for endosome to Golgi traffic caused redistribution of Wsc1p from the cell surface to internal compartments, indicative of recycling. Inhibition of Wsc1p endocytosis caused defects in polarized deposition of the cell wall and increased sensitivity to perturbation of cell wall synthesis. Our results reveal that the NPFX(1,2)D-Sla1p system is responsible for directing Wsc1p into an endocytosis and recycling pathway necessary to maintain yeast cell wall polarity. The dynamic localization of Wsc1p, a sensor of the extracellular wall in yeast, resembles polarized distribution of certain extracellular matrix-sensing integrins through endocytic recycling.  相似文献   

18.
Abstract

The generic mitogen-activated protein kinases (MAPK) signaling pathway is shared by four distinct cascades, including the extracellular signal-related kinases (ERK1/2), Jun amino-terminal kinases (JNK1/2/3), p38-MAPK and ERK5. Mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathway is reported to be associated with the cell proliferation, differentiation, migration, senescence and apoptosis. The literatures were searched extensively and this review was performed to review the role of MAPK/ERK signaling pathway in cell proliferation, differentiation, migration, senescence and apoptosis.  相似文献   

19.
20.
A macrophage-like cell line (P388D1) has been used to demonstrate that glucocorticoids inhibit the fluid-phase endocytosis of fluorescein-labeled dextran (FITC-dextran). Initial experiments demonstrated that the interaction of FITC-dextran with cells had all the features of fluid-phase uptake, ie, the amount taken up was proportional to the concentration in the medium, the uptake proceeded continuously with time and was blocked at 4 degrees C. Dexamethasone (10(-7) M) had no effect on endocytosis until 11 hours after addition of the steroid, when it inhibited the uptake of FITC-dextran by 35%. The amount of inhibition increased with longer exposure times to the hormone up to 50% after 22 hours. Although this effect on endocytosis was observed prior to any effect on growth of the cells, endocytosis as well as cell proliferation were inhibited in a dose dependent fashion. A preliminary survey of selected steroids has established that the inhibition of endocytosis was restricted to steroids of the glucocorticoid class. The key experiments were also performed using horseradish peroxidase instead of FITC-dextran with, essentially, identical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号