首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Histidine biosynthesis is one of the best studied metabolic pathways in bacteria. Although this pathway is thought to be highly conserved within and between bacterial species, a previous study identified a genetic region within the histidine operon (his) of nontypeable strains of Haemophilus influenzae (NTHI) that was more prevalent among otitis media strains than among throat commensal NTHI strains. In the present study, we further characterized this region and showed that genes in the complete his operon (hisG, -D, -C, -NB, -H, -A, -F, and -IE) are >99% conserved among four fully sequenced NTHI strains, are present in the same location in these four genomes, and are situated in the same gene order. Using PCR and dot blot hybridization, we determined that the his operon was significantly more prevalent in otitis media NTHI strains (106/121; 87.7%) than in throat strains (74/137; 54%) (prevalence ratio, 1.62; P<0.0001), suggesting a possible role in middle ear survival and/or acute otitis media. NTHI strains lacking the his operon showed attenuated growth in histidine-restricted media, confirming them as his-negative auxotrophs. Our results suggest that the ability to make histidine is an important factor in bacterial growth and survival in the middle ear, where nutrients such as histidine may be found in limited amounts. Those isolates lacking the histidine pathway were still able to survive well in the throat, which suggests that histidine is readily available in the throat environment.  相似文献   

4.
Cell growth and cell divisions are two fundamental biological processes for cells in multi-cellular organisms. The molecules involved in these biological processes are highly conserved within eukaryotes, including plants and unicellular organisms such as yeast. However, some regulatory molecules seem to be innovated during animal evolution. Therefore, to understand how the ubiquitous systems have evolved or have been conserved, we examined genes for the phosphoinositide 3-kinase (PI3K) pathway that is important for cell growth, and genes for cell cycle regulation in the genome of Ciona intestinalis. It was found that the Ciona intestinalis genome contains all the essential constituents of the PI3K pathway. In addition, the class IB PI3K catalytic and regulatory subunits, which had not previously been known in animals other than mammals, were found in the Ciona genome. Similarly, all essential cyclins and CDKs were found in the Ciona genome, while cyclin G and cyclin L were likely to be independently lost in the ascidian lineage, which may be dispensable for the cell cycle. Cyclin F, which was previously known only in vertebrates, was not found in the Ciona genome. Therefore, this gene was probably innovated during the evolution of vertebrates to be involved in vertebrate-specific cell cycle regulation. Since Ciona is regarded as one of the most primitive extant chordates, the present analysis gives us an insight into how these fundamental biological genes are evolved or are conserved during chordate evolution.  相似文献   

5.
Orthologous phenotypes, or phenologs, are seemingly unrelated phenotypes generated by mutations in a conserved set of genes. Phenologs have been widely observed and accepted by those who study model organisms, and allow one to study a set of genes in a model organism to learn more about the function of those genes in other organisms, including humans. At the cellular and molecular level, these conserved genes likely function in a very similar mode, but are doing so in different tissues or cell types and can result in different phenotypic effects. For example, the RAS‐RAF‐MEK‐MAPK pathway in animals is a highly conserved signaling pathway that animals adopted for numerous biological processes, such as vulval induction in Caenorhabditis elegans and cell proliferation in mammalian cells; but this same gene set has been co‐opted to function in a variety of cellular contexts. In this review, I give a few examples of how suppressor screens in model organisms (with a emphasis on C. elegans) can identify new genes that function in a conserved pathway in many other organisms. I also demonstrate how the identification of such genes can lead to important insights into mammalian biology. From such screens, an occasional silent suppressor that does not cause a phenotype on its own is found; such suppressors thus make for good candidates as therapeutic targets.  相似文献   

6.
The genome sequence of the hyperthermophilic methanogen Methanococcus jannaschii contains homologs of most genes required for spermidine polyamine biosynthesis. Yet genomes from neither this organism nor any other euryarchaeon have orthologs of the pyridoxal 5'-phosphate-dependent ornithine or arginine decarboxylase genes, required to produce putrescine. Instead, as shown here, these organisms have a new class of arginine decarboxylase (PvlArgDC) formed by the self-cleavage of a proenzyme into a 5-kDa subunit and a 12-kDa subunit that contains a reactive pyruvoyl group. Although this extremely thermostable enzyme has no significant sequence similarity to previously characterized proteins, conserved active site residues are similar to those of the pyruvoyl-dependent histidine decarboxylase enzyme, and its subunits form a similar (alphabeta)(3) complex. Homologs of PvlArgDC are found in several bacterial genomes, including those of Chlamydia spp., which have no agmatine ureohydrolase enzyme to convert agmatine (decarboxylated arginine) into putrescine. In these intracellular pathogens, PvlArgDC may function analogously to pyruvoyl-dependent histidine decarboxylase; the cells are proposed to import arginine and export agmatine, increasing the pH and affecting the host cell's metabolism. Phylogenetic analysis of Pvl- ArgDC proteins suggests that this gene has been recruited from the euryarchaeal polyamine biosynthetic pathway to function as a degradative enzyme in bacteria.  相似文献   

7.
8.
The two-component system (TCS), which works on the principle of histidine-aspartate phosphorelay signaling, is known to play an important role in diverse physiological processes in lower organisms and has recently emerged as an important signaling system in plants. Employing the tools of bioinformatics, we have characterized TCS signaling candidate genes in the genome of Oryza sativa L. subsp. japonica. We present a complete overview of TCS gene families in O. sativa, including gene structures, conserved motifs, chromosome locations, and phylogeny. Our analysis indicates a total of 51 genes encoding 73 putative TCS proteins. Fourteen genes encode 22 putative histidine kinases with a conserved histidine and other typical histidine kinase signature sequences, five phosphotransfer genes encoding seven phosphotransfer proteins, and 32 response regulator genes encoding 44 proteins. The variations seen between gene and protein numbers are assumed to result from alternative splicing. These putative proteins have high homology with TCS members that have been shown experimentally to participate in several important physiological phenomena in plants, such as ethylene and cytokinin signaling and phytochrome-mediated responses to light. We conclude that the overall architecture of the TCS machinery in O. sativa and Arabidopsis thaliana is similar, and our analysis provides insights into the conservation and divergence of this important signaling machinery in higher plants.  相似文献   

9.
Sponges (phylum Porifera) are the phylogenetic oldest Metazoa still extant. They can be considered as reference animals (Urmetazoa) for the understanding of the evolutionary processes resulting in the creation of Metazoa in general and also for the metazoan gene organization in particular. In the marine sponge Suberites domuncula, genes encoding p38 and JNK kinases contain nine and twelve introns, respectively. Eight introns in both genes share the same positions and the identical phases. One p38 intron slipped for six bases and the JNK gene has three more introns. However, the sequences of the introns are not conserved and the introns in JNK gene are generally much longer. Introns interrupt most of the conserved kinase subdomains I-XI and are found in all three phases (0, 1 and 2). We analyzed in details p38 and JNK genes from human, Caenorhabditis elegans and Drosophila melanogaster and found in most genes introns at the positions identical to those in sponge genes. The exceptions are two p38 genes from D. melanogaster that have lost all introns in the coding sequence. The positions of 11 introns in each of four human p38 genes are fully conserved and ten introns occupy identical positions as the introns in sponge p38 or JNK genes. The same is true for nine, out of ten introns in the human JNK-1 gene. The introns in human p38 and JNK genes are on average more than ten times longer than corresponding introns in sponges. It was proposed that yeast HOG1-like kinases (from i.e. Saccharomyces cerevisiae and Emericella nidulans) and metazoan p38 and JNK kinases are orthologues. p38 and JNK genes were created after the split from fungi by the duplication and diversification of the HOG1-like progenitor gene. Our results further support the common origin of p38 and JNK genes and speak in favor of a very early time of duplication. The ancestral gene contained at least ten introns, which are still present at the very conserved positions in p38 and JNK genes of extant animals. Four of these introns are present at the same positions in the HOG-like gene in the fungus E. nidulans. The others probably entered the ancestral gene after the split of fungi, but before the duplication of the gene and before the creation of the common, urmetazoan progenitor of all multicellular animals. A second gene coding for an immune molecule is described, the allograft inflammatory factor, which likewise showed a highly conserved exon/intron structure in S. domuncula and in human. These data show that the intron/exon borders are highly conserved in genes from sponges to human.  相似文献   

10.
11.
The physically linked hisG and hisE genes, encoding for ATP-phosphoribosyltransferase and phosphoribosyl-ATP-pyrophosphohydrolase were isolated from the Corynebacterium glutamicum gene library by complementation of Escherichia coli histidine auxotrophs. They are two of the nine genes that participate in the histidine biosynthetic pathway. Molecular genetics and sequencing analysis of the cloned 9-kb insert DNA showed that it carries the hisG and hisE genes. In combining this result with our previous report, we propose that all histidine biosynthetic genes are separated on the genome by three unlinked loci. The coding regions of the hisG and hisE genes are 279 and 87 amino acids in length with a predicted size of about 30 and 10 kDa, respectively. Computer analysis revealed that the amino acid sequences of the hisG and hisE gene products were similar to those of other bacteria.  相似文献   

12.
The histidine tRNA genes of yeast   总被引:9,自引:0,他引:9  
Yeast has at least seven nuclear histidine tRNA genes although there is a single tRNAHis. We have sequenced three of the histidine tRNA genes. The genes have identical coding sequences and the DNA anti-codon sequence GTG corresponds to the GUG anti-codon in tRNAHis. None of the three yeast histidine tRNA genes has an intervening sequence. Two of the three genes contain repeated DNA elements in the region adjacent to the 5' end of the histidine tRNA gene. One of the elements, sigma, is 18 base pairs (bp) from the 5' end of each of these genes, sigma elements are highly conserved and flanked by 5-bp repeats. The other element, delta, is at variable distances from the tRNA gene; one is 439 bp from a histidine tRNA gene and the other is 52 bp from a histidine tRNA gene. These solo delta elements are quite divergent when compared with delta s associated with transposon yeast elements and are not flanked by 5-bp repeats.  相似文献   

13.
In this paper we describe the isolation of a second gene in the newly identified pyridoxine biosynthesis pathway of archaebacteria, some eubacteria, fungi, and plants. Although pyridoxine biosynthesis has been thoroughly examined in Escherichia coli, recent characterization of the Cercospora nicotianae biosynthesis gene PDX1 led to the discovery that most organisms contain a pyridoxine synthesis gene not found in E. coli. PDX2 was isolated by a degenerate primer strategy based on conserved sequences of a gene specific to PDX1-containing organisms. The role of PDX2 in pyridoxine biosynthesis was confirmed by complementation of two C. nicotianae pyridoxine auxotrophs not mutant in PDX1. Also, targeted gene replacement of PDX2 in C. nicotianae results in pyridoxine auxotrophy. Comparable to PDX1, PDX2 homologues are not found in any of the organisms with homologues to the E. coli pyridoxine genes, but are found in the same archaebacteria, eubacteria, fungi, and plants that contain PDX1 homologues. PDX2 proteins are less well conserved than their PDX1 counterparts but contain several protein motifs that are conserved throughout all PDX2 proteins.  相似文献   

14.
15.
The HIS3 gene of Phytophthora parasitica was isolated from a plasmid library by complementing E. coli his B463 to histidine prototrophy. The gene, encoding imidazolegly cerolphosphate dehydratase, was expressed in E. coli independently of the promoter of the cloning vector. The growth of Phytophthora parasitica was far more sensitive to 3–amino–1,2,4–triazole (amitrole) than that of the E. coli w.t. The inhibition was fully counteracted by histidine. E., coli with a defective imidazoleglycerolphosphate dehydratase complemented by the Phytophthora gene exhibited the same high sensitivity against amitrole as Phytophthora itself. The expression of genes in E. coli is suggested for, screening potential inhibitors of enzymes in pathogenic organisms.  相似文献   

16.
We used Southern blotting to screen a variety of bacterial genes for homology to the kdp genes of Escherichia coli, genes that encode an ATP-driven K+ transport system. We found that most enterobacteria have sequences homologous to those of the three kdp structural genes and the kdpD regulatory gene. A number of distantly related species, including some cyanobacteria, have sequences homologous to those of the structural genes but not the regulatory gene. In all cases only a single region of homology was found. These results suggest that ATP-driven transport systems similar to the Kdp system in structure and regulation are found in many enteric organisms. In other gram-negative organisms, the ATPase is more divergent, retaining good homology at the DNA level only to the highly conserved phosphorylated subunit of the ATPase.  相似文献   

17.
N‐glycosylation of proteins is one of the most important post‐translational modifications that occur in various organisms, and is of utmost importance for protein function, stability, secretion, and loca‐lization. Although the N‐linked glycosylation pathway of proteins has been extensively characterized in mammals and plants, not much information is available regarding the N‐glycosylation pathway in algae. We studied the α 1,3‐glucosidase glucosidase II (GANAB) glycoenzyme in a red marine microalga Porphyridium sp. (Rhodophyta) using bioinformatic and biochemical approaches. The GANAB‐gene was found to be highly conserved evolutionarily (compo‐sed of all the common features of α and β subunits) and to exhibit similar motifs consistent with that of homolog eukaryotes GANAB genes. Phylogenetic analysis revealed its wide distribution across an evolutionarily vast range of organisms; while the α subunit is highly conserved and its phylogenic tree is similar to the taxon evolutionary tree, the β subunit is less conserved and its pattern somewhat differs from the taxon tree. In addition, the activity of the red microalgal GANAB enzyme was studied, including functional and biochemical characterization using a bioassay, indicating that the enzyme is similar to other eukaryotes ortholog GANAB enzymes. A correlation between polysaccharide production and GANAB activity, indicating its involvement in polysaccharide biosynthesis, is also demonstrated. This study represents a valuable contribution toward understanding the N‐glycosylation and polysaccharide biosynthesis pathways in red microalgae.  相似文献   

18.
The natural history of nitrogen fixation   总被引:1,自引:0,他引:1  
In recent years, our understanding of biological nitrogen fixation has been bolstered by a diverse array of scientific techniques. Still, the origin and extant distribution of nitrogen fixation has been perplexing from a phylogenetic perspective, largely because of factors that confound molecular phylogeny such as sequence divergence, paralogy, and horizontal gene transfer. Here, we make use of 110 publicly available complete genome sequences to understand how the core components of nitrogenase, including NifH, NifD, NifK, NifE, and NifN proteins, have evolved. These genes are universal in nitrogen fixing organisms-typically found within highly conserved operons-and, overall, have remarkably congruent phylogenetic histories. Additional clues to the early origins of this system are available from two distinct clades of nitrogenase paralogs: a group composed of genes essential to photosynthetic pigment biosynthesis and a group of uncharacterized genes present in methanogens and in some photosynthetic bacteria. We explore the complex genetic history of the nitrogenase family, which is replete with gene duplication, recruitment, fusion, and horizontal gene transfer and discuss these events in light of the hypothesized presence of nitrogenase in the last common ancestor of modern organisms, as well as the additional possibility that nitrogen fixation might have evolved later, perhaps in methanogenic archaea, and was subsequently transferred into the bacterial domain.  相似文献   

19.
20.
Biosynthetic pathway evolution needs to consider the evolution of a group of genes that code for enzymes catalysing the multiple chemical reaction steps leading to the final end product. Tryptophan biosynthetic pathway has five chemical reaction steps that are highly conserved in diverse microbial genomes, though the genes of the pathway enzymes show considerable variations in arrangements, operon structure (gene fusion and splitting) and regulation. We use a combined bioinformatic and statistical analyses approach to address the question if the pathway genes from different microbial genomes, belonging to a wide range of groups, show similar evolutionary relationships within and between them. Our analyses involved detailed study of gene organization (fusion/splitting events), base composition, relative synonymous codon usage pattern of the genes, gene expressivity, amino acid usage, etc. to assess inter- and intra-genic variations, between and within the pathway genes, in diverse group of microorganisms. We describe these genetic and genomic variations in the tryptophan pathway genes in different microorganisms to show the similarities across organisms, and compare the same genes across different organisms to find the possible variability arising possibly due to horizontal gene transfers. Such studies form the basis for moving from single gene evolution to pathway evolutionary studies that are important steps towards understanding the systems biology of intracellular pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号