首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of extracellular ethanolamine in phospholipid synthesis was examined in cultured bovine aortic endothelial cells. Serine and ethanolamine were both readily accumulated by these cells and incorporated into phospholipid. Exposing cells to extracellular ethanolamine for 4-6 weeks had no effect on cell growth, yet increased the phosphatidylethanolamine content of these cells by 31% as compared to control cells. The intracellular content of ethanolamine was measured by high performance liquid chromatography, and results showed that the ethanolamine-treated cells contained a significantly greater amount of free ethanolamine compared to control cells (0.62 +/- 0.07 nmol/mg of protein versus 0.27 +/- 0.05 nmol/mg of protein, respectively). Ethanolamine-treated cells also had decreased accumulation and incorporation into lipid of [3H]ethanolamine throughout a 48-h incubation and increased K'm and V'max parameters of ethanolamine transport as compared to control cells. Studies were also done to examine the effect of ethanolamine on the generation of free ethanolamine from phosphatidylserine. In pulse-chase experiments with [3H]serine, a physiological concentration of ethanolamine (25 microM) decreased the amount of 3H-labeled phosphatidylethanolamine produced from 3H-labeled phosphatidylserine by 12 h as compared to the amount of 3H-labeled phosphatidyl-ethanolamine produced in the absence of ethanolamine in the chase incubation. Furthermore, ethanolamine-treated cells accumulated 20% less labeled ethanolamine in the aqueous pool from [3H]serine after 24 h of incubation than did control cells. These results can be explained by isotope dilution with the ethanolamine pool that accumulates in these cells with time when exposed to media supplemented with a physiological concentration of ethanolamine and by an effect of ethanolamine on ethanolamine generation from phosphatidylserine. The results show that an extracellular source of ethanolamine significantly influences the phospholipid metabolism of cultured bovine aortic endothelial cells.  相似文献   

2.
3.
Monolayer cultures of rat hepatocytes have been examined for their ability to secrete ethanolamine plasmalogen as a component of nascent lipoproteins. In culture medium from these cells, ethanolamine plasmalogen comprises approx. 20-30% of total ethanolamine glycerophospholipids when measured either as phospholipid mass or by the incorporation of [1-3H]ethanolamine. An approximately equal distribution of the plasmalogen was found throughout all lipoprotein density fractions. The content of plasmalogen in whole rat serum, was 36% of total ethanolamine glycerophospholipids. In contrast, in rat liver and cultured hepatocytes the amount of ethanolamine plasmalogen was 5-fold lower than in serum or culture medium (approx. 5% of total ethanolamine phospholipids). Normal human plasma also contains ethanolamine plasmalogen in relatively large amounts (approx. 50% of total ethanolamine phospholipids). Thus, a major function of plasmalogen biosynthetic enzymes in liver may be the provision of ethanolamine plasmalogen for secretion into lipoproteins. Previous studies (e.g., Zoeller, R.A. et al. (1988) J. Biol. Chem. 263, 11590-11596) have suggested that ethanolamine plasmalogen may function as an antioxidant for the protection of lipid and protein membrane components against oxidation. Oxidized, but not native, low-density lipoprotein is rapidly taken up by macrophages with the formation of foam cells characteristic of atherosclerotic lesions (Steinbrecher, U.P. et al. (1984) Proc. Natl. Acad. Sci. USA 81, 3883-3887). Thus, the presence of plasmalogen as part of newly secreted lipoprotein particles may prevent their oxidation and subsequent uptake by macrophages.  相似文献   

4.
5.
During growth on ethanolamine, Salmonella enterica synthesizes a multimolecular structure that mimics the carboxysome used by some photosynthetic bacteria to fix CO(2). In S. enterica, this carboxysome-like structure (hereafter referred to as the ethanolamine metabolosome) is thought to contain the enzymatic machinery needed to metabolize ethanolamine into acetyl coenzyme A (acetyl-CoA). Analysis of the growth behavior of mutant strains of S. enterica lacking specific functions encoded by the 17-gene ethanolamine utilization (eut) operon established the minimal biochemical functions needed by this bacterium to use ethanolamine as a source of carbon and energy. The data obtained support the conclusion that the ethanolamine ammnonia-lyase (EAL) enzyme (encoded by the eutBC genes) and coenzyme B(12) are necessary and sufficient to grow on ethanolamine. We propose that the EutD phosphotransacetylase and EutG alcohol dehydrogenase are important to maintain metabolic balance. Glutathione (GSH) had a strong positive effect that compensated for the lack of the EAL reactivase EutA protein under aerobic growth on ethanolamine. Neither GSH nor EutA was needed during growth on ethanolamine under reduced-oxygen conditions. GSH also stimulated growth of a strain lacking the acetaldehyde dehydrogenase (EutE) enzyme. The role of GSH in ethanolamine catabolism is complex and requires further investigation. Our data show that the ethanolamine metabolosome is not involved in the biochemistry of ethanolamine catabolism. We propose the metabolosome is needed to concentrate low levels of ethanolamine catabolic enzymes, to keep the level of toxic acetaldehyde low, to generate enough acetyl-CoA to support cell growth, and to maintain a pool of free CoA.  相似文献   

6.
The effects of exogenous ethanolamine concentrations on ethanolamine uptake and its subsequent incorporation into phosphatidylethanolamine were examined. Hamster hearts were perfused with 0.04-1000 microM labelled ethanolamine. Analysis of radioactivity distribution in ethanolamine-containing metabolites revealed an accumulation of labelled ethanolamine when the heart was perfused with greater than or equal to 0.4 microM labelled ethanolamine. The changes in radioactivity distribution indicated that the phosphorylation of ethanolamine had become rate-limiting in the CDP-ethanolamine pathway when the heart was perfused with greater than or equal to 0.4 microM ethanolamine. Perfusion with different concentrations of ethanolamine did not significantly change the intracellular ethanolamine pool. The accumulation of labelled ethanolamine without a corresponding change in the ethanolamine pool suggests that the newly imported ethanolamine did not equilibrate with the endogenous ethanolamine pool. We postulate that the newly imported ethanolamine was preferentially utilized for phosphatidylethanolamine biosynthesis.  相似文献   

7.
The transport of the polar head groups, ethanolamine and choline, was examined in cultured bovine aortic endothelial cells. Both ethanolamine and choline are taken up by high- and low-affinity systems. The K'm and V'max for the Na+-dependent, high-affinity ethanolamine and choline transport system are 3.0 and 3.0 microM and 5.4 and 7.3 pmol/mg protein/min, respectively. Ethanolamine and choline competitively influence one another's transport as the presence of 50 microM ethanolamine increases the K'm but not the V'max of choline uptake. Likewise, 50 microM choline increases the K'm but not the V'max of ethanolamine transport. The concentration of ethanolamine that inhibits maximal velocity of 5 microM choline by 50% is 9.7 microM, while 12 microM choline inhibits 5 microM ethanolamine maximal velocity by 50%. Uptake of both head groups is only partially Na+-dependent and is inhibited similarly by 2-methylethanolamine and 2,2-dimethylethanolamine at all concentrations examined. Hemicholinium-3, a classic inhibitor of high-affinity, Na+-dependent choline transport, reduces both ethanolamine and choline accumulation in a concentration-dependent fashion, but has a greater effect on choline transport at higher concentrations. The major portion of these data is consistent with our hypothesis that the uptake of physiological concentrations of ethanolamine and choline may occur through the same transport system. However, the results of the effect of hemicholinium-3 and the extent of Na+-dependency of choline and ethanolamine uptake could be interpreted as meaning that separate transport systems for choline and ethanolamine exist which cross react or that a single transport system exists which has separate active sites for the two compounds.  相似文献   

8.
Induction of ethanolamine ammonia-lyase formation in Escherichia coli required both the ethanolamine and vitamin B12, and was gratuitous during growth on glycerol. Ethanolamine analogues inhibited enzyme activity and inhibited growth with ethanolamine as the the nitrogen source, but did not act as inducers. Enzyme formation was more rapid when ethanolamine was added to cultures containing vitamin B12 rather than the reverse. Enzyme formation was subject to catabolic repression, glucose and acetate being particularly effective. Chloramphenicol, I-aminopropan 2-01 and 1,3-diaminopropan-2-01 prevented enzyme induction. Ethanolamine ammonia-lyase, resolved from its cobamide coenzyme, was purified 35-fold. The apoenzyme was stable for several days in the presence of ethanolamine, dithiothreitol, glycerol and K+ ions. Enzyme formation therefore requires both substrate and cobamide coenzyme to be present simultaneously as inducers.  相似文献   

9.
The copper-catalyzed O2 uptake of phosphatidyl ethanolamine emulsion was measured by the Warburg’s manometry. When EDTA (ethylenediamine, tetraacetic acid) was added to the emulsion, EDTA inactivated copper stoichiometrically in molar ratio of 1: 1. Mono-ethanolamine, α-glycerophosphoric acid, O-phosphoryl ethanolamine, and glyceryl phosphoryl ethanolamine were not effective. IDA (iminodiacetic acid) depressed the O2 uptake of phosphatidyl ethanolamine and the affinity of phosphatidyl ethanolamine to copper was estimated as one-thirtieth that of IDA. The emusion diluted with Tween 20 showed lower affinity to copper of one-tenth of the original emulsion. At the interface of the phosphatidyl ethanolamine, its high affinity to copper like chelate effect is assumed.  相似文献   

10.
Ethanolamine Accumulation by Photoreceptor Cells of the Rabbit Retina   总被引:1,自引:1,他引:0  
The rabbit retina accumulates ethanolamine by an overall process that has a high affinity for ethanolamine. This process is different from the choline uptake, since ethanolamine accumulation was unaffected by high choline concentrations. Autoradiography identified the major site of high-affinity uptake as the perinuclear region of the photoreceptor cells. Ethanolamine accumulated by the high-affinity uptake was not used for neurotransmission by photoreceptor cells but was used to synthesize phosphatidylethanolamine. However, only a small percentage of the accumulated ethanolamine was converted into phospholipid. The rate of phosphorylation may contribute to control of phospholipid synthesis, since choline kinase activity is much greater than ethanolamine kinase activity in the rabbit retina.  相似文献   

11.
We have identified aptamers (synthetic oligonucleotides) binding to the very small molecule ethanolamine with high affinity down to the low nanomolar range. These aptamers were selected for their ability to bind to ethanolamine immobilised on magnetic beads, from an 96mer library of initially about 1 x 10(16) randomised ssDNA molecules. The dissociation constants of these aptamers range between K(D)=6 and K(D)=19 nmol L(-1). The aim of the development of ethanolamine aptamers is their use for the detection of this substance in clinical and environmental analysis. Ethanolamine is associated with several diseases. Moreover, ethanolamine and its derivatives di- and tri-ethanolamine are used in chemical and cosmetic industries. The use of biosensors with ethanolamine aptamer as new molecular recognition element could be an innovative method for an easy and fast detection of ethanolamine.  相似文献   

12.
Synthesis of Ethanolamine and Its Regulation in Lemna paucicostata   总被引:2,自引:2,他引:0       下载免费PDF全文
Mudd SH  Datko AH 《Plant physiology》1989,91(2):587-597
The metabolism of ethanolamine and its derivatives in Lemna paucicostata has been investigated, with emphasis on the path-way for synthesis of phosphoethanolamine, a precursor of phosphatidylcholine in higher plants. In experiments involving labeling of intact plants with radioactive serine, ambiguities of interpretation due to entry of radioactivity into methyl groups of methylated ethanolamine derivatives were mitigated by pregrowth of plants with methionine. Difficulties due to labeling of diacylglyceryl moieties of phospholipids were avoided by acid hydrolysis of crucial samples and determination of radioactivity in isolated serine or ethanolamine moieties. The results obtained from such experiments are most readily reconciled with the biosynthetic sequence: serine → ethanolamine → phosphoethanolamine → phosphatidylethanolamine. A possible alternative is: serine → phosphatidylserine → phosphatidylethanolamine → ethanolamine → phosphoethanolamine. Cell-free extracts of L. paucicostata were shown to produce CO2 from the carbon originating as C-1 of serine at a rate sufficient to satisfy the demand for ethanolamine moieties. A number of experiments produced no support for a hypothetical role for phosphoserine in phosphoethanolamine formation. Uptake of exogenous ethanolamine commensurately down-regulates the synthesis of ethanolamine moieties (considered as a whole, and regardless of their state of derivatization at the time of their formation). In agreement with previous observations, uptake of exogenous choline down-regulates the methylation of phosphoethanolamine, without being accompanied by secondary accumulation of a marked excess of ethanolamine derivatives.  相似文献   

13.
The eutH gene is part of an operon that allows Salmonella enterica to use ethanolamine as a sole source of nitrogen, carbon, and energy. Although the sequence of EutH suggests a role in transport, eutH mutants use ethanolamine normally under standard conditions (pH 7.0). These mutants fail to use ethanolamine at a low pH. Evidence is presented that protonated ethanolamine (Eth0) does not enter cells, while uncharged ethanolamine (Eth0) diffuses freely across the membrane. The external concentration of Eth0 varies with the pH (pK=9.5). At pH 7.0, the standard ethanolamine concentration (41 mM) provides enough Eth0 for an influx rate that can support growth with or without EutH. When a lowered pH and/or ethanolamine concentration reduced the Eth0 concentration below 25 microM, EutH was needed to facilitate diffusion. EutH+ cells grew normally at Eth0 concentrations above 3 microM, close to the Km (9 microM) of the first degradative enzyme, ethanolamine ammonia lyase. It is suggested that EutH facilitates diffusion of Eth0. As predicted for a transporter, EutH contributed to the toxicity of ethanolamine seen under some conditions; furthermore, fusion of EutH to fluorescent Yfp protein provided evidence that EutH is a membrane protein.  相似文献   

14.
Cultured dissociated cells from rat embryo cerebral hemispheres were incubated with [U-14C]ethanolamine and the resulting cellular labeled products were identified. A highly efficient uptake for ethanolamine with a Km of approximately 8.3 muM was calculated. A rapid labeling of phosphorylethanolamine was observed prior to the appearance of label in lipids. A lag period of 2.5 min for the phosphorylation reaction was observed, followed by an almost linear rate for up to 40 min. After a 1-min incubation, a plateau for free ethanolamine taken up by the cells was established. Respiratory inhibitiors such as cyanide, 2,4-dinitrophenol, and N-ethylmaleimide decreased by the formation of phosphorylethanolamine. However, the amount offree ethanolamine present in the cells increased 1.6-fold after 10 min of incubation with N-ethylmaleimide. 2-Chloroethylamine, a structural analog of ethanolamine, and choline were both competitive inhibitiors with an apparent Ki of 0.1 mM and 0.36 mM, respectively. Incubations of short duration suggest that both compounds affect ethanolamine transport into the cells. Based on these studies it is suggested that ethanolamine transport and the phosphorylation reaction are independent events. Evidence based on studies with hemicholinium-3 and chloroethylamine suggest that ethanolamine uptake may proceed by a pathway independent of either choline or serine uptake.  相似文献   

15.
Abstract: The report concerns mechanisms for the increase of extracellular levels of ethanolamine and phosphoethanolamine in CNS regions, such as the hippocampus, in transient brain ischemia, hypoglycemia, seizures, etc. l -Serine (2.5–10 m M ), d -serine (10 m M ), or ethanolamine (10 m M ) was administered for 20 min via a microdialysis tubing to the hippocampus of unanesthetized rabbits. The concentrations of primary amines were determined in the dialysates. When levels were elevated 10–100 times in the extracellular fluid, l -serine caused a dose-dependent increase of the concentration of extracellular ethanolamine. Ethanolamine caused a corresponding, although somewhat smaller, increase in serine levels. Furthermore, l -serine also induced an increased concentration of phosphoethanolamine that was delayed in time relative to the peak of ethanolamine. d -Serine was as effective as l -serine in raising ethanolamine levels but had no effect on phosphoethanolamine. Ethanolamine, but not l -serine, also increased extracellular glutamate/aspartate levels in an MK-801-dependent fashion. A similar effect, but delayed in time, was observed with d -serine. These effects were inhibited by MK-801. The concentrations of other amino acids were not significantly affected. The characteristics of the effects are suggestive of base exchange reactions between serine and ethanolamine and between ethanolamine and serine glycerophospholipids, respectively, in neuronal plasma membranes.  相似文献   

16.
Ethanolamine phosphotransferase (EPT) is a key enzyme responsible for the synthesis of ethanolamine glycerophospholipids. Plasmenylethanolamine is a predominant molecular subclass of ethanolamine glycerophospholipids in the heart. The present study was designed to identify the selective use of 1-O-alk-1'-enyl-2-acyl-sn-glycerol as a substrate for EPT as a mechanism responsible for the predominance of plasmenylethanolamine in the rabbit heart. EPT activity in rabbit myocardial membranes using 1,2-diacyl-sn-glycerol as substrate is activated by Mn2+, inhibited by dithiobisnitrobenzoic acid (DTNB) and is unaffected by Ca2+. In contrast, ethanolamine phosphotransferase activity using 1-O-alk-1'-enyl-2-acyl-sn-glycerol as substrate is inhibited by Mn2+ and Ca2+, but is activated by DTNB. Additionally, ethanolamine phosphotransferase activity using 1-O-alk-1'-enyl-2-acyl-sn-glycerol substrate was more sensitive to thermal denaturation compared with that of 1,2-diacyl-sn-glycerol. Taken together, these results suggest that separate ethanolamine phosphotransferase activities are present in heart membranes that are responsible for the synthesis of phosphatidylethanolamine and plasmenylethanolamine.  相似文献   

17.
The administration of ethanolamine to adult male mice resulted in a significant increase in ethanolamine kinase activity in liver and kidney. Similarly, choline administration resulted in a significant increase in choline kinase activity in liver and kidney. The administration of ethanolamine resulted in enhancement of choline kinase activity concomitantly with ethanolamine kinase activity in liver and kidney. The administration of choline, however, did not result in any significant increase in ethanolamine kinase activity in liver or kidney. Cycloheximide administration along with choline-ethanolamine prevented the increase in kinase activity in liver and kidney. The results obtained have been discussed in relation to the regulatory role of choline kinase and ethanolamine kinase by de novo synthesis in response to enhanced substrate concentration, the secondary nature of choline kinase induction on ethanolamine administration, and possible distinction between choline kinase and ethanolamine kinase.  相似文献   

18.
Phosphatidyl ethanolamine and lipopolysaccharide were extracted and purified from the cell envelope fractions of Escherichia coli and Salmonella typhimurium. The two components were studied separately and after recombination, by use of electron microscopy and monolayer techniques, and by measuring their ability to participate in the enzyme-catalyzed uridine diphosphate-galactose:lipopolysaccharide alpha, 3 galactosyl transferase reaction, which requires a lipopolysaccharide-phospholipid complex as substrate. Electron microscopy of purified lipopolysaccharide showed a uniform population of hollow spheres, with each sphere bounded by a continuous leaflet. The diameter of the spheres was approximately 500 to 1,000 A, and the thickness of the enveloping leaflet was approximately 30 A. Phosphatidyl ethanolamine showed a regular lamellar structure. When lipopolysaccharide and phosphatidyl ethanolamine were mixed under conditions of heating and slow-cooling, the leaflet of the lipopolysaccharide spheroids appeared to extend directly into the phosphatidyl ethanolamine structure, with continuity between the two leaflets. Various stages of penetration were seen. At high concentrations of lipopolysaccharide, there were disruptive changes in phosphatidyl ethanolamine leaflets similar to those seen when saponin acts on cholesterol-lecithin leaflets. Monolayer experiments indicated that lipopolysaccharide penetrated a monomolecular film of phosphatidyl ethanolamine at an air-water interface, as revealed by an increase in surface pressure. The results indicate that a common leaflet structure containing lipopolysaccharide and phosphatidyl ethanolamine may be formed in vitro, and suggest that a similar leaflet may exist in the intact bacterial cell envelope.  相似文献   

19.
Phospholipid synthesis was investigated in human Y79 retinoblastoma cells, a cultured cell line of retinal origin that retains many neural characteristics. Ethanolamine is taken up by Y79 cells through a high-affinity transport system and is utilized to synthesize ethanolamine and choline phosphoglycerides. High-affinity ethanolamine uptake has a K'm of 40.6 microM and a V'max of 1.06 nmol/min/mg protein, and the process is Na+ dependent. Choline is the only compound tested that reduced ethanolamine uptake, and very high choline concentrations were required to produce this effect. The cells incorporate ethanolamine into phosphatidylethanolamine and ethanolamine plasmalogen at equivalent rates, and the rates of catabolism of these phospholipids are similar. Only a small quantity of ethanolamine is incorporated into phosphatidylcholine, but the amount is not reduced by the addition of choline. Serine is incorporated into phosphatidylserine, which then is converted to phosphatidylethanolamine. Ethanolamine reduces but does not abolish this conversion. Unlike ethanolamine, only a small amount of serine is incorporated into ethanolamine plasmalogen. It is possible that the ethanolamine high-affinity uptake system is necessary to provide a neural cell with enough free ethanolamine for ethanolamine plasmalogen synthesis.  相似文献   

20.
Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (phosphatidylethanolamine) [corrected] and GPCho (phosphatidylcholine) [corrected] . Ethanolamine is also found as an integral component of the GPI (glycosylphosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocholine by ethanolamine and choline kinases via the Kennedy pathway. Database mining revealed two putative C/EKs (choline/ethanolamine kinases) in the Trypanosoma brucei genome, which were cloned, overexpressed, purified and characterized. TbEK1 (T. brucei ethanolamine kinase 1) was shown to be catalytically active as an ethanolamine-specific kinase, i.e. it had no choline kinase activity. The K(m) values for ethanolamine and ATP were found to be 18.4+/-0.9 and 219+/-29 microM respectively. TbC/EK2 (T. brucei choline/ethanolamine kinase 2), on the other hand, was found to be able to phosphorylate both ethanolamine and choline, even though choline was the preferred substrate, with a K(m) 80 times lower than that of ethanolamine. The K(m) values for choline, ethanolamine and ATP were 31.4+/-2.6 microM, 2.56+/-0.31 mM and 20.6+/-1.96 microM respectively. Further substrate specificity analysis revealed that both TbEK1 and TbC/EK2 were able to tolerate various modifications at the amino group, with the exception of a quaternary amine for TbEK1 (choline) and a primary amine for TbC/EK2 (ethanolamine). Both enzymes recognized analogues with substituents on C-2, but substitutions on C-1 and elongations of the carbon chain were not well tolerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号