首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report extends our investigations of the cell cycle dependence of the expression of thermotolerance to include tolerance expressed by Chinese hamster ovary (CHO) cells exposed to 45.0 degrees C hyperthermia. We examined the response of asynchronous cells following exposure at 45.0 degrees C. A maximum in thermotolerance under these conditions was reached approximately 12 hr after a 15-min exposure to 45.0 degrees C hyperthermia and progressively decreased thereafter. Cells were delayed in S and G2 phase for 24 hr, after which time cell growth resumed. We then characterized the response of CHO cell populations synchronized in G1 or early or late S phase. We observed that the expression of tolerance depended on the position of cells in the cell cycle and was modulated by changes in the sensitivity of cells as they progressed through the cell cycle subsequent to the tolerance induction dose. We measured the variation in the sensitivity of these cells to 45.0 degrees C hyperthermia throughout the cell cycle and found substantial changes as cells progressed through S phase. Cells in early S phase were the most sensitive to heat at this temperature, and as these cells progressed through S phase, they became progressively more resistant. In addition, G1 cells were delayed for approximately 15 to 18 hr by a 15-min, 45.0 degrees C heat pulse, whereas S-phase cells were delayed to a lesser extent. The data presented in this report suggest that the induction of thermotolerance is relatively non-cell-cycle specific, but the magnitude of expression of tolerance depends on the position of cells in the cell cycle at the time of the subsequent challenge heat dose.  相似文献   

2.
Synchronous Chinese hamster ovary cells were heated in G1 and incubated at 37 degrees C at pH 6.75 or pH 7.4 before they were heated a second time. The magnitude and rate of development and decay of thermotolerance were greatly reduced at pH 6.75. This was also observed for asynchronous cells. Furthermore, the heat-induced delay in cell cycle progression was greatly enhanced at low pH and correlated with the reduced rate for development and decay of thermotolerance. However, studies with [3H]TdR to kill cells entering S phase showed that the decay of thermotolerance is relatively independent of the cell cycle. Therefore, low pH apparently slows many cell processes, including those associated with heat-induced cell cycle delay and the rate of development and decay of thermotolerance.  相似文献   

3.
We have extended our studies on the cell cycle dependence of thermotolerance to include HeLa cells heated at 45.0 degrees C to compare the results to Chinese hamster ovary (CHO) cells. We found that asynchronous HeLa cells were more resistant to heat than CHO cells but showed a similar development and decay of thermotolerance. Flow cytometry (FCM) was used to study redistributions in the cell cycle after an initial heat dose. Cells heated for 35 min at 45.0 degrees C were delayed in G1 by about 7 h compared to controls, with delays in late S and G2/M phase also. The heat sensitivity varied through the cell cycle; G1 cells were the most resistant to heat, while S-phase cells were uniformly sensitive throughout S phase, and G2 cells were resistant. Thermotolerance could be induced and expressed in early or late S-phase cells, but to a lesser extent than for G1 cells. The results were similar in many respects to CHO cells, but there were significant differences.  相似文献   

4.
A role for heat-shock proteins (HSPs) in proliferation after heat treatment was considered in synchronized mouse neuroblastoma cells. For this purpose enhancement of HSP synthesis after heat treatment was inhibited by actinomycin D and the effect of this on cell cycle progression into mitosis and on cell survival was studied both in thermoresistant G1- and in thermosensitive late S/G2-phase cells. In G1-phase cells expression of basal and heat-induced HSP synthesis was the same as that in late S/G2-phase cells, which suggests that regulation of thermoresistance throughout the cell cycle is not directly linked with HSP synthesis. The synthesis of HSP36, HSP68, and HSP70 was enhanced after a 30-min treatment at 41-43 degrees C. Increase of HSP synthesis after heat shock was partly suppressed by the presence of 0.1 microgram/ml actinomycin D during heat treatment, while 0.2 micrograms/ml prevented enhancement of HSP synthesis completely. Suppression of heat-induced HSP synthesis by actinomycin D had the same concentration dependency in G1- and late S/G2-phase cells. Actinomycin D potentiated induction of mitotic delay by heat treatment (30 min, 42.5 degrees C) but only under conditions where it actually inhibited heat-induced enhancement of HSP synthesis. Heat-induced cell killing was also potentiated by actinomycin D. The potentiating effect of actinomycin D on heat-induced mitotic delay and on heat-induced cell killing was more pronounced in G1-phase cells than in late S/G2-phase cells. These results give evidence for a role of HSPs in the resumption of proliferation after heat treatment and suggest that heated G1-phase cells are more dependent on HSP synthesis for recovery of proliferation after heat treatment than heated late S/G2-phase cells.  相似文献   

5.
Phosphatidylinositol-3 kinase (PI3K) proteins are important regulators of cell survival and proliferation. PI3K-dependent signalling regulates cell proliferation by promoting G1- to S-phase progression during the cell cycle. However, a definitive role for PI3K at other times during the cell cycle is less clear. In these studies, we provide evidence that PI3K activity is required during DNA synthesis (S-phase) and G2-phase of the cell cycle. Inhibition of PI3K with LY294002 at the onset of S-phase caused a 4- to 5-h delay in progression through G2/M. LY294002 treatment at the end of S-phase caused an approximate 2-h delay in progression through G2/M, indicating that PI3K activity functions for both S- and G2-phase progression. The expression of constitutively activated Akt partially reversed the inhibitory effects of LY294002 on mitotic entry, which demonstrated that Akt was one PI3K target that was required during G2/M transitions. Inhibition of PI3K resulted in enhanced susceptibility of G2/M synchronized cells to undergo apoptosis in response to DNA damage as compared to asynchronous cells. Thus, similar to its role in promoting cell survival and cell cycle transitions from G1 to S phase, PI3K activity appears to promote entry into mitosis and protect against cell death during S- and G2-phase progression.  相似文献   

6.
This study was undertaken to gain more insight into the effects of cyclic adenosine monophosphate (cAMP) on cell-cycle progression in the B-lymphoid precursor cell line Reh. The adenylate cyclase activator forskolin reduced the proliferation of asynchronously growing Reh cells by 50% after 72 hr culture. Growth inhibition was associated with an accumulation of cells in G1. Furthermore, we demonstrated that forskolin provoked a delay of cells for approximately 10 hr in G2/M prior to the G1 arrest. Two different methods were applied to elucidate how cells in different phases of the cell cycle were affected by an elevated cAMP level. One method was based on centrifugal elutriation, whereby synchronous cell populations from the different phases of the cell cycle were isolated. By the other method, S-phase cells were selectively stained by pulsing asynchronously growing cells with bromo-deoxyuridine (BrdU). The data demonstrate that the position of a cell in the cell cycle is critical in determining how the cell will respond to an elevated cAMP level. Thus cells in G1 at the time forskolin is added are not delayed in G2/M, but they will subsequently accumulate in G1 after 48 hr. Cells given forskolin in G2/m, however, are delayed for 10 hr in G2/M, but they do not accumulate in G1. Cells given forskolin in the S phase are delayed in G2/M as well as arrested in G1. The results suggest that cAMP inhibits growth of the Reh cells by preventing the cells from passing important restriction points located in the G1 and G2 phases of the cell cycle.  相似文献   

7.
The effect of adriamycin on cell cycle phase progression of CHO cells synchronized into the various phases of the cell cycle by elutriation was investigated by high resolution pulse cytophotometry. Cells treated in all phases of the cell cycle showed delay in their subsequent progression. In addition to the wellknown block of cells in the G2-phase, a delay in passage of cells from G1 to S and a decreased rate of transit through the S-phase were observed. A broadening of the DNA distributions of the treated cells was observed after cell division indicating induction of chromosomal abnormalities.  相似文献   

8.
The effects of extreme hypoxia on cell cycle progression were studied by simultaneous determination of DNA and bromodeoxyuridine (BrdU) contents of individual cells. V79-379A cells were pulse-labelled with BrdU (1 microM, 20 min, 37 degrees C) and then incubated for up to 12 hr in BrdU-free medium under either aerated or extremely hypoxic conditions. After the incubation interval (0-12 hr), the cells were trypsinized and fixed in 50% EtOH. Propidium iodide and a fluorescein-labelled monoclonal antibody to BrdU were then used to quantify DNA content and incorporated BrdU, respectively. Measurements in individual cells were made by simultaneous detection of green and red fluorescence upon excitation at 488 nm using flow cytometry. Bivariate analysis revealed progression of BrdU-labelled cells in aerated cultures out of S phase, into G2 and cell division, with halving of mean fluorescence, and back into S phase by approximately 9 hr after the BrdU pulse. Hypoxia immediately arrested cells in all phases of the cell cycle. Both the DNA distribution and the bivariate profile of cells that were fixed from 2 to 12 hr after induction of hypoxia were identical to the 0 hr controls. The percent of cells with green fluorescence in a mid-S phase window remained 100% and the mean fluorescence of these cells remained at control (0 hr) levels. This indicates that, under hypoxic conditions, cells were moving neither into nor out of S phase. Cultures that had been hypoxic for 12 hr exhibited an increasing rate of BrdU uptake with time after re-aeration. Re-aerated cells were able to complete or initiate DNA synthesis, but their rates of progression through the cell cycle were markedly reduced. A large fraction of cells appeared unable to divide up to 12 hr following release from hypoxia.  相似文献   

9.
Growth factors and cell anchorage are both required for cell cycle G(1)-phase progression, but it is unclear whether their function is mediated through the same set of cell cycle components and whether they are both required during the same periods of time. We separately analyzed the requirements of serum and anchorage during G(1)-phase progression and found that human dermal fibroblasts as well as wild type, pRb(-/-), and p107(-/-) mouse embryonic fibroblasts needed serum (growth factors) until mid-G(1)-phase but required cell anchorage until late G(1)-phase to be competent for S-phase entry. Importantly, however, pRb/p107 double-null mouse embryonic fibroblasts lacked serum requirement in mid-G(1)-phase but still required cell anchorage until late G(1)-phase to enter S-phase. Our results indicate that pRb and p107 do not constitute the last control point for extracellular factors during G(1)-phase progression, and they functionally separate the requirements for serum and cell anchorage in terms of involved cell cycle components.  相似文献   

10.
Extracellular signal-regulated kinase activity is essential for mediating cell cycle progression from G(1) phase to S phase (DNA synthesis). In contrast, the role of extracellular signal-regulated kinase during G(2) phase and mitosis (M phase) is largely undefined. Previous studies have suggested that inhibition of basal extracellular signal-regulated kinase activity delays G(2)- and M-phase progression. In the current investigation, we have examined the consequence of activating the extracellular signal-regulated kinase pathway during G(2) phase on subsequent progression through mitosis. Using synchronized HeLa cells, we show that activation of the extracellular signal-regulated kinase pathway with phorbol 12-myristate 13-acetate or epidermal growth factor during G(2) phase causes a rapid cell cycle arrest in G(2) as measured by flow cytometry, mitotic indices and cyclin B1 expression. This G(2)-phase arrest was reversed by pre-treatment with bisindolylmaleimide or U0126, which are selective inhibitors of protein kinase C proteins or the extracellular signal-regulated kinase activators, MEK1/2, respectively. The extracellular signal-regulated kinase-mediated delay in M-phase entry appeared to involve de novo synthesis of the cyclin-dependent kinase inhibitor, p21(CIP1), during G(2) through a p53-independent mechanism. To establish a function for the increased expression of p21(CIP1) and delayed cell cycle progression, we show that extracellular signal-regulated kinase activation in G(2)-phase cells results in an increased number of cells containing chromosome aberrations characteristic of genomic instability. The presence of chromosome aberrations following extracellular signal-regulated kinase activation during G(2)-phase was further augmented in cells lacking p21(CIP1). These findings suggest that p21(CIP1) mediated inhibition of cell cycle progression during G(2)/M phase protects against inappropriate activation of signalling pathways, which may cause excessive chromosome damage and be detrimental to cell survival.  相似文献   

11.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

12.
There is still controversy over whether the oxygen enhancement ratio (OER) varies as a function of dose and cell cycle phase. In the present study, the OER has been measured as a function of survival level and cell cycle phase using volume flow cell sorting. This method allows both the separation of cells in different stages of the cycle from an asynchronously growing population, and the precise plating of cells for accurate measurements at high survival levels. We have developed a cell suspension gassing and sampling system which maintained an oxygen tension less than 20 ppm throughout a series of sequential radiation doses. For both radiation-resistant cells (CHO-K1) and a radiation-sensitive clone (CHO-xrs6), we could separate relatively pure populations of G1-phase, G1/S-boundary, S-, and G2-phase cells. Each cell line showed a typical age response, with cells at the G1/S-phase boundary being 4 (CHO-K1) to 12 (CHO-xrs6) times more sensitive than cells in the late S phase. For both cell lines, G1-phase cells had an OER of 2.3-2.4, compared to an OER of 2.8-2.9 for S-phase and 2.6-2.7 for G2-phase cells. None of these age fractions showed a dependence of OER on survival level. Asynchronously growing cells or cells at the G1/S-phase boundary had an OER similar to that of G1-phase cells at high survival levels, but the OER increased with decreasing survival level to a value near that of S-phase cells. These results suggest that the decrease in OER at high survival levels for asynchronous cells may be due to differences in the OERs of the inherent cell age subpopulations. For cells in one cell cycle stage, oxygen appears to have a purely dose-modifying effect.  相似文献   

13.
Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.  相似文献   

14.
The mitotic cell selection technique was used to monitor the effect of cordycepin and/or 100 rad of X-rays on the entry of asynchronous or synchronous Chinese hamster ovary cells into mitosis. Continuous exposure of asynchronous cells to 5–50 μg/ml of cordycepin caused a rapid increase in the relative numbers of cells entering mitosis. In irradiated cells, cordycepin also reduced a 120-min mitotic delay by about 80 min and shifted the X-ray transition point about 10 min farther away from mitosis. Further studies showed that synchronous cells, treated continuously with 15 μg/ml of cordycepin starting at mid-to-late S phase, proceeded into mitosis approx. 40 min ahead of controls. This acceleration was associated with a 30-min lengthening of S phase and a reduction in the length of G2 from 80 to about 10 min. Furthermore, cordycepin reduced the 70-min mitotic delay observed for cells irradiated in S phase by 20 min. In contrast to the results for treatment at mid-S phase, continuous treatment during G2 of unirradiated synchronous cells with 15 μg/ml of cordycepin had little effect on accelerating cells into mitosis, yet did reduce by about 60 min the 170-min mitotic delay observed for cells irradiated in G2. Unirradiated synchronous cells treated with cordycepin starting before mid-S did not reach mitosis. Thus, there are the following transition points or intervals for cordycepin: for treatment prior to mid-S phase, cell cycle progression through S is blocked; for treatment between mid-S and late S, progression through S continues but progression through G2 is accelerated; and for treatment during G2, the rate of progression in accelerated only if the cells have been irradiated. These results are discussed in relation to the synthesis during late S and G2 of critical protein molecules essential for mitosis.  相似文献   

15.
Cell cycle phase-dependent induction of ornithine decarboxylase-antizyme   总被引:1,自引:0,他引:1  
The activities of ornithine decarboxylase (ODC) and ODC inhibitory protein (ODC-antizyme) were studied in Ehrlich ascites tumor cells, separated according to their position in the cell cycle by centrifugal elutriation. Release and/or synthesis of ODC-antizyme was induced by putrescine treatment. Each mouse received an intraperitoneal injection of 25 mumoles of putrescine at 0, 1, 2, and 3 hr after tumor transplantation. Tumor cells obtained from putrescine-treated and control mice at 4 hr after transplantation were separated into fractions representing all phases of the cell cycle. The cell cycle distribution of the tumor cells in each fraction was determined by flow cytometry. In control tumor cells the ODC activity exhibited two maxima; in late-G1/early-S and in late-S/G2. A marked decrease in ODC activity was observed in mid-S phase. This decrease coincided with maximum ODC-antizyme activity (revealed by putrescine treatment), suggesting that ODC-antizyme is involved in the regulation of ODC activity during the cell cycle.  相似文献   

16.
The purpose of this study was to investigate the cell cycle perturbation of cultured C6 rat glioma cells induced by 1-(4-amino-2-methyl-5-pyrimidyl)methyl-3-(2-chloroethyl)3-nitrosourea hydrochloride (ACNU) using simultaneous flow cytometric measurements of DNA and bromodeoxyuridine (BrdU) content. A new graphic computer program permitted the quantification of cell density in hexagonal subareas and allowed the fraction of BrdU-labeled cells with mid-S phase DNA content (FLS) to be defined in a narrow window. The cell kinetic parameters such as cell cycle time (Tc) and S phase time (Ts) were estimated from a manually plotted FLS curve at 18 and 6 hr, respectively. The major effect of ACNU on the cell cycle was an accumulation of the cells in the G2M phase 12 to 24 hr posttreatment when compared to G2M traverse of untreated cells. For the two-dimensional analysis, cells were labeled with BrdU and then treated with ACNU, or treated with ACNU and then labeled with BrdU. It was concluded that the cells in the S and G2M phases at the time of ACNU administration progressed to mitosis but that the G1 phase cells accumulated in the subsequent G2M phase. Two-dimensional FCM analysis using BrdU provided a useful tool in studying cell cycle perturbation.  相似文献   

17.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

18.
The response kinetics of rat C6 glioma cells to heat shock was investigated by means of flow cytometric DNA measurements and western blot analysis of HSP levels. The results showed that the effects on cell cycle progression are dependent on the cell cycle phase at which heat shock is applied, leading to either G1 or G2/M arrest in randomly proliferating cells. When synchronous cultures were stressed during G0 they were arrested with G1 DNA content and showed prolongation of S and G2 phases after release from the block. In proliferating cells, HSC70 and HSP68 were induced during the recovery and reached maximum levels just before cells were released from the cell cycle blocks. Hyperthermic pretreatment induced thermotolerance both in asynchronous and synchronous cultures as evidenced by the reduced arrest of cell cycle progression after the second heat shock. Thermotolerance development was independent of the cell cycle phase. Pre-treated cells already had high HSP levels and did not further increase the amount of HSP after the second treatment. However, as in unprimed cells, HSP reduction coincided with the release from the cell cycle blocks. These results imply that the cell cycle machinery can be rendered thermotolerant by heat shock pretreatment and supports the assumption that HSP70 family members might be involved in thermotolerance development.  相似文献   

19.
Abstract. The effects of extreme hypoxia on cell cycle progression were studied by simultaneous determination of DNA and bromodeoxyuridine (BrdU) contents of individual cells. V79-379A cells were pulse-labelled with BrdU (1 μM, 20 min, 37°C) and then incubated for up to 12 hr in BrdU-free medium under either aerated or extremely hypoxic conditions. After the incubation interval (0-12 hr), the cells were trypsinized and fixed in 50% EtOH. Propidium iodide and a fluorescein-labelled monoclonal antibody to BrdU were then used to quantify DNA content and incorporated BrdU, respectively. Measurements in individual cells were made by simultaneous detection of green and red fluorescence upon excitation at 488 nm using flow cytometry. Bivariate analysis revealed progression of BrdU-labelled cells in aerated cultures out of S phase, into G2 and cell division, with halving of mean fluorescence, and back into S phase by approximately 9 hr after the BrdU pulse. Hypoxia immediately arrested cells in all phases of the cell cycle. Both the DNA distribution and the bivariate profile of cells that were fixed from 2 to 12 hr after induction of hypoxia were identical to the 0 hr controls. the percent of cells with green fluorescence in a mid-S phase window remained 100% and the mean fluorescence of these cells remained at control (0 hr) levels. This indicates that, under hypoxic conditions, cells were moving neither into nor out of S phase. Cultures that had been hypoxic for 12 hr exhibited an increasing rate of BrdU uptake with time after re-aeration. Re-aerated cells were able to complete or initiate DNA synthesis, but their rates of progression through the cell cycle were markedly reduced. A large fraction of cells appeared unable to divide up to 12 hr following release from hypoxia.  相似文献   

20.
The effect of serum and temperature elevation on proliferation has been studied in synchronized mouse neuroblastoma (Neuro-2A) cells. The effects of serum were studied on the induction of (a) mitotic delay due to a non-lethal heat treatment (30 min at 42.7 degrees C) and (b) the loss of colony-forming capacity after a more extensive heat treatment (45 min at 44 degrees C or a continuous 42.7 degrees C heat treatment). The following results were obtained. Under conditions of serum depletion, cell cycle extension of heated G1 phase cells was more than that of heated G2 phase cells. Serum protected against heat-induced alterations of cell cycle progression in G1- but not in G2 phase cells. This effect of serum could be mimicked by a supplement to the medium of human transferrin, bovine pancreas insulin and selenium, and was correlated with protection of protein synthesis. Serum also affected heat-induced cell killing. Under conditions of serum depletion, G1 phase cells were more resistant to heat compared to G2 cells. The presence of serum during heat treatment further increased the thermoresistance of G1 phase cells, but did not affect sensitivity of G2 phase cells. This effect of serum could not be mimicked by a supplement of transferrin, insulin and selenium. These results indicate that serum protects G1 phase cells for heat-induced changes of cell cycle progression as well as on cell survival, but the mechanisms involved in both phenomena seem to be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号